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Abstract. Sensors such as video surveillance and weather monitoring systems
record a significant amount of dynamic data which are represented by vector
fields. We present a novel algorithm to measure the similarity of vector fields
using global distributions that capture both vector field properties (e.g., vector
orientation) and relational geometric information (e.g., the relative positions of
two vectors in the field). We show that such global distributions are capable of
distinguishing between vector fields of varying complexity and can be used to
quantitatively compare similar fields.
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1 Introduction

Comparing vector fields is becoming increasingly relevant as sensor systems now record
a significant amount of dynamic data. For example, vector fields may come from video
surveillance data (via tracking and optical flow), from weather phenomena (wind speed
and direction and wave currents), and from medical imaging (phase-contrast magnetic-
resonance angiography captures 3D velocity fields of moving tissue [1]). In video anal-
ysis, comparing these vector fields may improve the recognition of activities, faces,
and facial expressions [2,3]. For weather data, measuring the similarity between vector
fields can help scientists understand how wind and wave currents have changed over
time and to compare with simulations. In medical imaging, measuring the difference
between vector fields enable doctors to analyze changes in tissue over time and study
the variation of particular organs or tissue groups over large populations.

We present a novel algorithm to measure the similarity of vector fields using global
distributions (one for each vector field) that can be quantitively compared by comput-
ing the difference between them. Our key contribution is the development of global
distributions that capture both vector field properties such as vector orientation and re-
lational information (e.g., the relative positions of two vectors in the field). Previous
work in 3D shape matching has proven that relational information is effective in shape
classification, and we show that this is also true for comparing vector fields.

2 Related Work

Vector field analysis identifies and locates singularities (critical points where the mag-
nitude of the vector vanishes), separatrices emanating from saddle points, and periodic
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orbits. Critical points are further classified into sinks, sources, saddles, focus, and center
points using the eigenvalues and eigenvectors of the Jacobian matrix. There is signif-
icant research in the area of vector field analysis and singularity classification, includ-
ing [4,5,6,7,8,9]. The algorithm we present does not depend on locating critical points
in vector fields because many naturally occuring vector fields do not actually contain
singularities and because locating such points is computationally intensive. Instead, we
collect statistics on the vector field in the form of discrete distributions, or histograms,
and measure the similarity between vector fields by computing the difference, or norm,
between the histograms. As results show, our approach is able to differentiate between
vector fields with different configurations of singularities even though we do not explic-
itly locate them.

Geometric distributions (also called shape histograms [10] or shape distributions
[11]) provide a way of comparing shapes based on statistical properties. These ap-
proaches record the distribution of a selected feature in a histogram for efficient stor-
age, indexing, and comparison via norms on the histogram. A single histogram may be
generated for the entire field (global histograms), or one for each surface point (local
histograms) to be used as a local descriptor. Global histograms store the statistics of the
entire shape and are used to compare whole objects. To compare two objects, a norm
is computed between the histograms. Standard methods include the Minkowski LN

norms, the χ2 distance, the Battacharyya distance, Earth Mover’s distance, and the cor-
relation coefficient. Geometric distributions are known for their invariance to rotation
and translation of the shape and robustness to noise due to their statistical nature.

Statistics on vector fields from optical flow have been explored in [12] where the
goal was to obtain a statistical consensus for use as a prior in optical flow computation,
not to find a disciminating distribution. We focus on global distributions that enable us
to efficiently compare two vector fields by computing the difference between a single
pair of histograms.

3 Global Distributions for Vector Fields

In developing a global distribution for vector fields, our goal is to find the vector field
property that will result in discriminating distributions that can act as signatures for
vector fields. We now describe different global distributions we have developed, and in
Section 4, show results of measuring the similarity between test vector fields of varying
complexity – from few to many singularities, complex fields that contain no singularity,
and real vector fields designed for painterly rendering [9] and from flow through a diesel
engine cylinder [13]. We generate a single global distribution for each vector field. The
distribution is a discrete histogram in which each bin covers a range of values for a
given vector field property, and each bin is a count of the number of times its range was
encountered in the vector field.

3.1 A Simple One-dimensional Distribution

An intuitive statistic for 2D vector fields is to bin the vectors in the field according
to orientation, resulting in a 1D distribution as shown in the 2nd column of Figure 1.



Measuring the Similarity of Vector Fields Using Global Distributions 189

0

1.8

vector orientation (degrees)

Distribution of Vector Orientation

vector orientation (degrees)

co
un

t (
# 

in
ci

de
nc

es
)

co
un

t (
# 

in
ci

de
nc

es
)

    Distribution of Distance and 
Dot Product of Random Samples

Euclidean distance
do

t p
ro

du
ct

do
t p

ro
du

ct

lo
g(

co
un

t)
lo

g(
co

un
t)

0

1.8

0 180-180
300

800

1300

0 180-180
300

800

1200

0 400200 600

0 400200 600

-1

1

0

-1

1

0

    Distribution of Distance and 
Curvature of Streamline Samples

Euclidean distance

cu
rv

at
ur

e
cu

rv
at

ur
e

Fig. 1. Left to right: Two vector fields related by a rotation (green indicates a source, red a sink)
overlayed with streamlines; histogram of vector orientation; histogram of distance and vector
dot product between pairs of randomly selected points; and histograms of distance and curvature
between points on streamlines

The 1D distributions are clearly equivalent up to a phase shift (due to the rotation of the
singularities), and are thus sensitive to rotations in the vector field. To find the minimum
difference between the histograms requires shifting one plot with respect to the other.

The 1D histogram also fails to account for geometric, or positional, relationships be-
tween vectors. In 3D shape matching, Osada et al. found that histograms which preserve
positional relationships are more effective for shape matching [11]. They showed that
a 1D distribution based on binning the Euclidean distance between pairs of randomly
selected surface points was particularly successful in 3D shape classification. Ohbuchi
et al. extend this concept to a 2D distribution by binning 3D surface points based on
distance and the dot-product between surface normal vectors [14]. We now describe
a geometry-preserving 2D distribution for vector fields that captures both statistics on
vector properties (e.g., vector dot product) and positional relationships between points
in the vector field using the Euclidean distance.

3.2 Geometry-Preserving Distributions

We present a novel 2D geometry-preserving distribution for vector fields. The distri-
butions are generated by randomly selecting pairs of points, computing the distance
between them and the dot product between the vectors located at the points, and then
binning the pairs in a 2D histogram based on these two computed values. The 3rd col-
umn in Figure 1 shows the resulting histograms for the vector fields on the left. A
difference between the distributions can be directly computed (we use χ2 distance)
without requiring any shifts, unlike the 1D distributions based on vector orientation.
Although computing the difference between 2D histograms is equivalent to shifting to
find the min difference between 1D histograms, the 2D histograms are more informative
and discriminating. In particular, Figure 1 shows that the 2D histograms are invariant
to rotations in the vector field. The 2D geometry-preserving distributions (3rd and 4th
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Fig. 2. Top: translation (columns 1 and 2) and scaling (columns 3 and 4) of the vector field shown
in Figure 1 (top-left). Bottom: histograms of distance and curvature between points on streamlines
show that the distributions are relatively invariant to translation and scaling. The χ2 distance
between the above distributions and the streamline distribution of the vector field in Figure 1
(top-left) are, from left to right: 0.077, 0.066, 0.125, 0.052 out of a max of 1.0.

columns) for the top and bottom vector fields are equivalent even though the position
of the singularities are rotated by 90 degrees.

Note that we do not compute the distance and vector dot-product between every pair
of points in the domain because it is computationally expensive (for 512 × 512 vector
fields, there are 5124 pairs). Instead, we use a large number of samples – 10,000 pairs of
points are randomly selected. Figure 4 (left) shows the χ2 distance between the vector
field distributions based on the distance and dot-product between randomly selected
pairs of points for 14 different data sets (10 of which are shown in Figure 3).

3.3 Distributions over Streamlines

The 2D distribution we describe above can distinguish between simple and complex
vector fields (e.g., those with one singularity versus many). However, it cannot distin-
guish between different complex fields or different simple fields. For example, the plot
of Figure 4 (left) shows that simple fields 1 through 4 are equally different from each
other. The same is true of complex fields 5 through 12 and 14 in the plot.

To compute a distribution that further distinguishes between vector fields, we implic-
itly record additional structural information by extracting streamlines from the vector
field (as shown in Figure 1). Streamlines are formed by randomly seeding points in the
field and allowing them to move through the field guided by the vectors. The paths taken
by the points form streamlines. We uniformly distribute streamlines by preventing them
from growing into regions where streamline density is high, similar to [16].

Streamlines enhance the structure present in vector fields and provide a framework
for recording positional relationships between vectors. Instead of randomly selecting
pairs of points from across the entire vector field as in the previous section, we randomly



Measuring the Similarity of Vector Fields Using Global Distributions 191

Fig. 3. Top row: vector fields corresponding to 1, 2, 3, 4, 5, 8, 9, 12, 13, 14 in plots of Figure 4.
Middle row: distance and dot-product distributions from random samples over entire field. Bot-
tom row: distance and curvature distributions from streamline samples. Due to space limitations,
we have omitted four vector fields which are rotated versions of some of the above. They can be
found at our website [15].

select pairs of points from the same streamline. The intuition is that points on the same
streamline have a stronger geometric relationship than randomly selected pairs of points
which may be very far apart. The resulting distribution now only collects data between
strongly related points that are along the same path in the vector field.

With streamlines available, we can record curvature as the second property (rather
than vector dot product) in the 2D histogram. Given two randomly selected points on
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Fig. 4. χ2 distance between 2D distributions of 14 different vector fields. Darker (closer to 0)
means more similar. Vector fields are shown in Figure 3.

the same streamline, we compute the mean of the two points’ discrete curvature and bin
them based on distance and mean curvature. For a point (x, y) on the streamline, the
discrete curvature k(x, y) is:

k(x, y) =
|x′y′′ − y′x′′|
(x′2 + y′2)3/2 (1)

In the equation above, x′ and x′′ are the discrete first and second derivatives of x,
respectively (and similarly for y). Each streamline is an ordered list of uniformly dis-
tributed points, making it easy to compute the discrete derivatives via finite differencing.
The last column of Figure 1 are distributions of distance and curvature between points
sampled on the same streamline. Figure 3 (bottom rows) are distributions of distance
and curvature for the 10 vector fields shown above them. The color coding in Figure 1
is used for all distributions.

In Figure 1, we showed the rotational invariance of our geometry-preserving distri-
butions. We further test the translational and scale invariance by moving the pair of
sink and source singularities and by scaling them to be farther apart and closer together.
In comparing the distributions of Figure 2 to that of Figure 1 (4th column, top), we
can see that the distributions are invariant to translation (1st two columns) and partially
invariant to scaling (last two columns). When the vector field is scaled-up, the singu-
larities are farther apart and cover a larger region of the field. The original vector field
is essentially cropped, and results in a distribution that, when compared to the original,
measures a difference. Scale invariance does hold when the vector field is scaled down.

4 Results and Conclusions

We now present results of using our geometry-preserving distributions to measure sim-
ularity between a set of 14 test vector fields and on the flow through a diesel engine
cylinder, a real-world dataset.
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4.1 Measuring Similarity on Test Vector Fields

We use Zhang et al.’s vector field design tool [9] to generate a test dataset of 14 vector
fields of varying complexity – from few to many singularities (1, 2, 3, 5, and >5), com-
plex fields that contain no singularity, and two real vector fields designed for painterly
rendering [9] (fields 11 and 12). Figure 3 shows 10 of the vector fields. Source singular-
ities are green; sinks are red; saddles are yellow; centers are pink (attracting) and cyan
(repelling); and regular vectors are cyan arrows. Squares surrounding singularities are
control knobs for rotation. All vector fields are 512x512, and histograms 200x200 in
size. The χ2 distance between N-bin normalized histograms, f and g, is:

χ2 : D(f, g) =
1
2

N∑

i=1

(f [i] − g[i])2

f [i] + g[i]
(2)

Results are plotted in Figure 4 for all 14 vector fields (darker means more similar).
The plots show that streamline distributions (right plot) provide a finer measure of sim-
ilarity (or dissimilarity) between the vector fields than our first geometry-preserving
distribution (left plot) which samples the entire field and captures broad differences be-
tween them. This also bears out in the distributions themselves (Figure 3) which reveal
streamline distributions to be more distinct than those generated from randomly sam-
pling the entire vector field. We found the computed differences between streamline
distributions of distance and dot-product to be similar to results using curvature.

Note that vector fields 1 and 2 are essentially identical – 1 contains a sink in the
center, whereas 2 contains a source. The only difference between the vector fields is
the vector direction (inward for a sink, outward for a source). The streamline distribu-
tions show that these two fields are very similar, and the and χ2 distance is close to
0. Intuitively, all samples on the same streamline with have a dot-product of 1.0 and a
curvature near 0 for both vector fields. Randomly sampling from the entire field does
not preserve this relationship, and the computed χ2 distance is greater.

4.2 Measuring Similarity on Engine Cylinder Slices

We tested our algorithm on a real-world dataset – the simulated flow within the com-
bustion chamber of a diesel engine. Engineers typically slice through the cylinder along
its length to analyze the simulation results, resulting in the circular flow patterns seen
in Figure 5. The ideal flow pattern is a spiral helix extending the length of the cylin-
der. This motion results in an optimal mixing of air and fuel leading to a more efficient
combustion process [13]. The 2D flow pattern obtained from slicing the ideal helix is
a swirl motion (Figure 5 left). By comparing the slices of the vector field along the
cylinder to the ideal swirl, we can provide a quantitative analysis of how close the flow
through a designed cylinder is to ideal, and order the slices based on similarity to the
ideal. This ordering provides engineers with information on where to improve their
design.

We computed the similarity of the ideal flow to 10 slices through the cylinder us-
ing streamline distributions and computed the χ2 distance between them. In Figure 5,
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ideal 1 4 6 10

Fig. 5. Left to right: ideal flow in a slice of the engine cylinder, and slices 1, 4, 6, and 10 from the
simulated flow in a designed combustion chamber. 1 and 10 are near the cylinder entrance and
exit, respectively, and are where the most turbulence occurs. Slice 6 is closest to ideal. Top: planar
vector fields from cylinder data. Middle: streamline distributions of distance and dot-product for
each slice. Bottom: close-up of top-left corner of the histograms show how they differ. Note that
the data is on a hexagonal grid, leading to the hexagonal boundaries around the circular slices.

we show 4 representative slices and their streamline distributions of distance and dot-
product. The numbering of the slices corresponds to their positions along the length
of the cylinder from where the fluid enters at slice 1 to where it exits at slice 10. For
completeness, we show all 10 slices and distance and curvature distributions in Figure 6.

The simulation data is embedded in a hexagonal grid, and hence, are essentially
aligned. We can directly compare vectors of a slice to the ideal slice in a point-wise
manner at each grid point using the dot-product. To do so, we sum up 1 minus the
normized vector dot-product for each grid point pair, so that similar vectors will con-
tribute 0, while vectors pointing in opposite directions will contribute 2 towards the
sum. Similar slices will have a sum closer to 0. For a consistent comparison between
this direct approach using the dot-product and our streamline approach, we compute
the streamline distributions of distance and dot-product. The results of both methods
are similar and consistent with the engineers’ expectations. Slices close to the top of the
cylinder where the fluid enters and slices near the bottom where the fluid exits tend to be
most turbulent and far from ideal. Slices in the center where the flow approaches a sta-
ble steady-state is closer to ideal. Using streamline distributions based on dot-product,
the order of the 10 slices from most to least similar to ideal is: 6, 7, 5, 8, 9, 10, 4, 3,
2, 1. Using the sum of 1 minus normalized dot-product between corresponding pairs,
the order is: 6, 7, 5, 8, 1, 4, 3, 2, 9, 10. The point-wise comparison is, of course, more
efficient than computing and comparing the streamline distributions.
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Fig. 6. 10 slices of the simulated flow within a designed combustion chamber and histograms of
distance and curvature between randomly selected pairs of points on the same streamline. Note
that the distribution for the ideal slice (not shown) is a horizontal line near the bottom.

Although we are not taking advantage of the rotational invariance of our distibutions
(since the cylinder slices are aligned), we have found that the positional, or contextual,
information implicitly stored in the distributions result in a better ordering of slice sim-
ilarity than the point-wise comparison. In the point-wise comparison, slice 1 falls in the
middle of the ordering based on similarity to ideal even though it is the slice with the
most visual turbulence, and slices 2 and 3 are closer to ideal than slices 9 and 10 near
the exit even though they appear more turbulent than 9 and 10.

5 Future Work

We have shown that geometry-preserving distributions – in particular, streamline dis-
tributions – enable us to quantitatively compare complex vector fields and distinguish
between them. They are invariant to rotation and translation of the vector field, and
have limited invariance to scaling. In future work, we will apply our algorithms to vec-
tor fields generated from optical flow and dense tracking of video.
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