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COURSE OVERVIEW

Goal

Learn about what's involved in developing a
slicer - issues, solutions, and open questions
in printer toolpath generation

Schedule
Session 1: 3D Printing With Plastic Filament

Session 2: Modeling for Filament-based 3D
Printing




COURSE OVERVIEW

For updates, please visit:

http://webloria.loria.fr/~slefebvr/sig15fdm/




3D PRINTING WITH PLASTIC FILAMENT

8:35am — 10:15am




MATERIAL PROPERTIES AND
MECHANICAL PROCESS

3D Printing with Plastic Filament




® EXTRUDER
MECHANICS
Stepper Filament
Motor
Pinwheel
Hot End =
[ | Il Heater
- Nozzle
Dinh & Gelman, 2015

Stepper motor drives a pinwheel which forces plastic filament down into the hot end
where a heater melts the plastic.

Melted plastic is extruded through a nozzle of some diameter (Makerbot’s is 0.4mm).

References:
http://reprap.org/wiki/File:Extruder_lemio.svg
http://en.wikipedia.org/wiki/Plastics_extrusion



© AMOUNT OF PLASTIC
EXTRUDED

« Modeling volume of plastic through nozzle
+ Filament and nozzle diameters
« Speed of extrusion

« Pinwheel slip results in under extrusion

« Modeling extruded filament profile

&/’ V j \ ‘

Dinh & Gelman, 2015

Print quality is directly tied to the amount of plastic being extruded — Too little, and
you have under-extrusion effects (brittle, thin infill). Over-extrude, and you get blobs.
So, we try very hard to estimate the amount of plastic that is going through the

nozzle.

Pinwheel slip: This is when the pinwheel that is extruding the filament slips on the
filament. This typically occurs at higher speeds.

The filament coming in typically has a circular profile, but as it is melted and laid
down next to an adjacent line of extruded filament it takes on a different profile —
e.g., compressed cylinder, rectangle, square. How you model this profile can affect
your estimation of the volume of plastic being extruded.



PRINTER MECHANICS

« Gantry type
« H gantry
« X-Y gantry

« Backlash: loss of mechanical motion due to
slack in the belt

« Gantry racking

Dinh & Gelman, 2015

A 3D printer is composed of a gantry on which the extruder block moves, and a belt
that enables motion in X and Y. Examples of gantry types include H and X-Y.

Backlash : Loss of mechanical motion due to slack in the belt. This has a dampening
effect on motion control resulting in a lemon-like profile if we were to print a perfect
circle.

Gantry racking is the divergence in Y as the toolhead is moved left to right and back in
an H gantry. The divergence is due to a net torque about the x-axis center.



H GANTRY

Belt

Extruder
block

Dinh & Gelman, 2015

Makerbot printers have an H gantry similar to this.



BACKLASH
COMPENSATION

« Backlash occurs when there is a change in
direction of printing

« Determine the amount of lost motion due to
backlash

« We recommend printing a 20 mm cube and measuring
its sides to see if it is < 20 mm

« Add the motion back in gradually after the
change in direction

Dinh & Gelman, 2015

As mentioned, backlash is the loss of mechanical motion due to slack in the belt, and
has a dampening effect on motion control. The effect is seen when we change
direction during extrusion, typically resulting smaller prints. To compensate for
backlash, we add the lost motion back in gradually after the change in the direction.

In Makerbot Desktop, users can set the following:
- backlashX" / "backlashY” — mm loss in each direction
- How quickly to compensate for this lost motion

References:
https://www.makerbot.com/support/new/04_Desktop/Knowledge Base/
Using_Custom_Slicing_Profiles/10-

MakerBot_Slicer_settings: Backlash_Compensation
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H GANTRY RACKING

Increased divergence in Y farther from the center

Pen Plot

Dinh & Gelman, 2015

Gantry racking is the divergence in Y as the toolhead is moved left to right and back.

The divergence is due to a net torque about the x-axis center.

What we get is a compressed figure-8 path where the Y-motion at the ends is on
order of mm. This plot is just an example where a pen has been mounted to the
toolhead to track the path.

Racking more exaggerated farther from the center. So, printers with smaller build
platforms such as the Replicator Mini will experience less racking.

We can’t really compensate for racking, but as long as it’s small enough, plastic
adhesion can overcome adverse affects.

11



THERMAL EFFECTS

« Cooling required to reduce filament
bonding
« Allow small layers to cool
+ Fan settings
- Chamber temperature settings

« Heat reduces warping during printing

Dinh & Gelman, 2015

Next are thermal effects.

We enforce cooling in a number of ways.

Tall, thin prints would collapse if we don’t allow its small layers to cool sufficiently. So
we require each layer to take some minimum amount of time.

Fan usage: the fan is on most of the time, but off during travel moves, and runs at
higher speeds during 1st layer.

Heated chamber only on the Z18 and a heated build plate on the Rep2x. Heated
chamber is meant to reduce warping during printing. Heating is used sparingly,
mostly adjusted settings for better rafts and reduce stringing.

References:

https://www.makerbot.com/support/new/04_Desktop/Knowledge Base/
Using_Custom_Slicing_Profiles/17-MakerBot_Slicer_settings: Fan_controls
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THERMAL EXPANSION

« Heat creeping up nozzle melting plastic

- Visual artifacts
- Stringing
« Blobbing

fremix of Octopus Arm Toothbrush Holder
(notcolinforreal) / CC BY-SA 3.0]

Dinh & Gelman, 2015

Thermal expansion inside nozzle - heat creeps up plastic inside the nozzle. This can
cause:

- Causing oozing plastic which can ooze out of the nozzle resulting in stringing

- Blobbiness as the volume of melted plastic is pushed out
So we have these conditions, what can we do to mitigate these problems?

Attribution:
http://www.thingiverse.com/thing:155396
http://www.thingiverse.com/notcolinforreal/about
Remix by http://www.thingiverse.com/seanocr/about

http://creativecommons.org/licenses/by-sa/3.0/
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THERMAL EXPANSION

« Heat creeping up nozzle melting plastic

- Visual artifacts - Solutions
» Stringing « Retraction
» Chamber temperature

* Turn off fan during non-
extrusion moves

» Account for oozing plastic
* Wiping off trailing plastic

Dinh & Gelman, 2015

Stringing can be reduced by tuning temperature for Z18s, for turning off the fan
during travel moves, and most importantly RETRACTION.

If temperature is too high, will lead to stringing.

Turning the fan off during long travel moves reduces stringing. Fan modulation is a
way to avoid turning the fan on and off for EVERY travel move.

Some Slicers reduce stringing and blobs by wiping off excess plastic. One way to do
this at the end of a print path is to move the extruder back over a traveled path.
Simplify 3D does this. We effectively wipe off excess plastic in dual extrusion by
printing purge walls described later.

References:

https://www.makerbot.com/support/new/04 Desktop/Knowledge Base/
Using_Custom_Slicing_Profiles/17-MakerBot_Slicer_settings:_Fan_controls
https://www.makerbot.com/support/new/04_Desktop/Knowledge Base/
Using_Custom_Slicing_Profiles/MakerBot_Slicer_settings: _Exponential_deceleration
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© EXPONENTIAL
DECELERATION

Decelerate near the end of a tool path
to accommodate for oozing plastic

Trailing Ooze Profile

Dinh & Gelman, 2015

Basic idea of exponential deceleration is to shut off the flow early, and decelerate
while continuing to ooze plastic at the end of a path, thereby reducing stringing.

From Makerbot Support pages:

“Melted plastic is a liquid, so when your extruder stops extruding, plastic will
continue to ooze out of the nozzle for a short time at a decreasing rate. Exponential
deceleration allows you to use that oozing plastic. First, it stops extrusion a little bit
early, so that it can use the ooze to finish the line of extrusion. Then it slowly

decelerates the extruder to correspond with the decreasing flow of plastic, so that
extrusion width remains consistent.”

We profiled the trail of oozing plastic to determine the rate of deceleration.
References:

https://www.makerbot.com/support/new/04_Desktop/Knowledge_ Base/
Using_Custom_Slicing_Profiles/MakerBot_Slicer_settings: Exponential_deceleration
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THERMAL EXPANSION

« Heat creeping up nozzle melting plastic

« Visual artifacts - Solutions

_ * For dual material, use
- Blobbing Extrusion Guards

» For single, don’t stop
printing!

Dinh & Gelman, 2015
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EXTRUSION GUARDS

Problem: idle extruders continue to ooze plastic
causing “dirty” prints and clogged nozzles

Solution: print Extrusion Guard wall before
printing object with idle extruder

[Hilbert Cube (tbuser) / CC BY-SA 3.0] [Traffic Cone (Dual Extrusion) (CocoNut) / CC BY-SA 3.0,
Patent pending

Dinh & Gelman, 2015

A problem with Dual extrusion is that when one of the extruders is idle, it will
continue to melt and ooze plastic.

The solution to this is what we call Extrusion Guards. Before an idle nozzle Is used to
print the object, we use it to print a layer of the purge wall. Doing so expunges any
blobs that have formed within the idle extruder.

Extrusion Guards are printed in zigzag pattern to prevent collapse. The walls are

located at the bounding box of the meshes, as opposed to following the surface, for
faster print times.

Attributions:
http://www.thingiverse.com/thing:16343
http://www.thingiverse.com/tbuser/about
http://creativecommons.org/licenses/by-sa/3.0/

http://www.thingiverse.com/thing:21773
http://www.thingiverse.com/CocoNut/about
http://creativecommons.org/licenses/by-sa/3.0/
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FACTORS AFFECTING PRINT TIME

3D Printing with Plastic Filament

18



PARTS OF A PRINT

[Support test model, MakerBot]

Dinh & Gelman, 2015

Before describing the steps and factors in toolpath generation, let’s cover the
different parts of a printed model. Let’s take this Support test model as an example.



PARTS OF A PRINT

Shells Infill

Supports Rafts

Dinh & Gelman, 2015

Shells are generated from the model contours.

Infill is the fill inside of shells to give the printed object strength and to hold up the
tops (a.k.a. roofs) of the printed object.

Supports hold up overhanging regions of the object. Overhangs are parts of the
model where the layer above extends well beyond the layers below.

Rafts are not part of the object, but are printed to make it easy to remove the object
from the build plate and reduce warping in the first few layers of the object. Rafts will
be covered in more detail in a later session.

Regions to be filled in are often called “islands”.

20



(@)
PARTS OF A PRINT
Shells
Supports i Infill
(removed)

Roof

Dinh & Gelman, 2015

Roofs are the tops of the object. Supports may be printed on top of roofs as seen
here to support parts of the object that overhang farther up in Z-height.



PARTS OF A PRINT

Overhangs

Dinh & Gelman, 2015

Typical roof that form the top of the object.

Overhangs are parts of the model where the layer above extends well beyond the
layers below, and gravity will cause the printed plastic to droop down, like printing

over air if they are not supported. Supports will be covered in more detail in a later
session.



PARTS OF A PRINT

Overhangs

Floors

Floors

Dinh & Gelman, 2015

Floors are the bottom surface of an object. Floors may be supported (some shown
here) if they are overhangs (printed supports removed).



SPECIAL FEATURES

« Single-filament walls
- Bridges

[Stretchy Bracelet (emmett) / CC BY-SA 3.0

Dinh & Gelman, 2015

Single-filament objects may exhibit “elastic” behavior.

Attribution:
http://www.thingiverse.com/thing:13505
http://www.thingiverse.com/emmett/about

http://creativecommons.org/licenses/by-sa/3.0/
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SPECIAL FEATURES

« Single-filament walls
- Bridges

[Bridges test model, MakerBot]

Dinh & Gelman, 2015

Bridges will be covered in more detail in a later session.

25



PRINT SPEED
HEURISTICS

« Shells, floors, and roofs are printed
slowly for high quality

« Infill and supports can be printed at
higher speeds

- Travel moves are typically at faster
speeds than extrusion moves

- Leaky moves avoid retraction

Dinh & Gelman, 2015

Travel moves are non-extrusion moves that include a retraction. Retractions require a
full stop.

Leaky moves are travel moves w/o retraction. The extruder will continue to ooze
plastic, causing stringiness during the travel, but avoids a retraction which is time
consuming due to the required full-stop and the time for retraction.

Reference:

https://www.makerbot.com/support/new/04 Desktop/Knowledge Base/
Using_Custom_Slicing_Profiles/03-MakerBot_Slicer_settings:_Travel_Movement
https://www.makerbot.com/support/new/04_Desktop/Knowledge Base/
Using_Custom_Slicing_Profiles/MakerBot_Slicer_settings:_Leaky_connections

26



PRINT TIMES
(Estimated hrs:mins:secs)
20mm Cube 00:13:29
Full Replicator Mini Build Volume 21:18:22
Full Replicator Build Volume 42:17:59
Full Z18 Build Volume 199:19:12

Dinh & Gelman, 2015

Estimated print times with default settings.
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REDUCING PRINT TIME

« Extrude at high speed for as much of the
print as possible
« Tool path optimization
« Start a layer near the last
+ Reduce retractions — allow leaky moves
« Speed up travel moves
« Avoid sharp turns (e.g., in printing fill)

+ “Optimization of tool-path generation for material extrusion-based additive
manufacturing technology”, Jin et al., Additive Manufacturing, 2014

« Thick infill and supports

Dinh & Gelman, 2015

Toolpath optimization — e.g., by starting a layer near where the last layer finished,
and avoid retractions (which also require a full-stop).

We can reduce retractions by, for example, not retracting when traveling over infill
since we don’t care that we have extra plastic in the infill.

Avoiding sharp turns in printing reduces print time because the gantry and extruder
does not have to slow down to make the turn. The sharper the turn, the more
deceleration is required — e.g., 360 degree turn is the worst. Because we don’t really
want to alter the model contours, the only place we can avoid sharp turns is in the fill
pattern. So, for example, linear infill is much faster than hexagonal infill. In Jin et al.’s
paper, they optimize the orientation of the fill pattern to reduce sharp turns.

Reference:
“Optimization of tool-path generation for material extrusion-based additive
manufacturing technology”, Jin et al., Additive Manufacturing 1-4 (2014), pp32-47
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100 MICRON PRINTS

+ Slow — dense tool path

« Poor quality
+ 100p solid fill is brittle
+ 100p supports fall down
+ 100y bridges fail

« Without rafts, build plate needs to be leveled
within 100

« Solution: Thick infill and supports

Dinh & Gelman, 2015

So with the advent of 100 micron layers, came a series of problems related to both
print speed and quality.

Solid fill at 100 microns is brittle, and takes many layers to seal over.
Support at 100 microns doesn’t stand up.
100 micron bridges don’t work well.

W/o rafts, 100 micron prints require build plate to be leveled to within 100 microns.

Our slicer architecture enabled us to break the uniform layer constraint. Uniform
layer constraint is where all layers must be the same height, and in particular, all
elements within a layer must be the same height. By breaking the uniform layer
constraint, we can more quickly print infill and supports by making them thicker than
the high resolution shells. Simplify3D also does this.

29



THICK FILL

« Print infill, supports, and rafts at standard layer
height (reduces print time)

« More complex tool path optimization

« Path dependencies:
+ Z height
« Move platform down, not up
« Extrusion guards
+ Minimum cooling time required between layers

Dinh & Gelman, 2015

Infill, supports, and rafts do not need to be high resolution, so print them at standard
layer height. But this leads to a more complex toolpath because now within a layer,
you may have components that are off different heights.

Z height dependency: obviously, we want to print layers below before printing those
that sit on top of them.

But more specifically, we want to always move the nozzle up and not down —we
don’t want nozzle to hit any printed material

For dual material, need to account for extrusion guards

Minimum cooling time — minimum time spent on printing a layer. W/o this, very
narrow tall things will not have time to cool between layers and they become
unstable and collapse

These constraints become more complicated to implement when we have regions of
variable layer height.

30



[Frog (owenscenic) / CC BY-NC-SA 3.0]

SLICES

3D Printing with Plastic Filament

Attribution:
http://www.Thingiverse.com/thing:3284
http://www.thingiverse.com/owenscenic/about

http://creativecommons.org/licenses/by-nc-sa/3.0/
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Filament printers, like most additive manufacturing processes, create the object layer
after layer.
Therefore, a crucial operation is how to split, or slice, the object into a set of layers.



Lefebvre & Claux, 2015

Here you can see on the left the real object (a finely tessellated sphere) and on the
right what will actually get printed. It is obvious that the object we print is different
from the initial one. In particular note the stair-stepping effect along the silhouette.

Using thinner slices will reduce this effect, but will require significantly more time. In
fact, for the same object you can expect 0,1mm slices to take three times the time it
takes to print with 0,3mm slices.



Uniform slicing

* Fixed thickness (typically from 0,1 to 0,3 mm)

The simplest way to divide a 3D model into slices is to do a uniform slicing, that is all
slices have the same thickness and the object is regularly subdivided.



Slice plane

[Frog (owenscenic) / CC BY-NC-SA 3.0]

Lefebvre & Claux, 2015

The left image shows what a single slice looks like. It corresponds to the intersection
between the object and a plane. Here we show in white the inside and in black the
outside. Most slicers will represent this as a polygon, and others will represent the
slice as an image.

On the right side you can see the object and were the slice is located. You can also
see the toolpaths, that is the paths along which plastic is deposited. We will detail
toolpaths in the next part of the course.

Attribution:
http://www.thingiverse.com/thing:3284
http://www.thingiverse.com/owenscenic/about
http://creativecommons.org/licenses/by-nc-sa/3.0/



Upon printing

extruder

[ Slice slab

We have just seen that a slice is the intersection of a plane and the object. When
printing, this plane will turn into a slab of plastic.



Where to sample the slice plane?

extruder

Slice slab

Slice plane ?

Let us consider the slab of a slice, that is the interval in Z in between which plastic will
get deposited.
An intriguing question is where should we sample the slice plane within the slab?



Where to sample the slice plane?

For instance, if we sample at the top ...



Where to sample the slice plane?

... here is what will be printed.
You can see in purple the plastic that is in the slab but not in the object. In this case
the error is quite large: we print an object bigger than the original.



Where to sample the slice plane?

Now let us sample at the bottom.



Where to sample the slice plane?

V| J

Here is what gets printed. This time we have missing plastic: we print an object
smaller than the original,
Again, this is a significant error.

10



Where to sample the slice plane?

Let’s try the middle.
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Where to sample the slice plane?

Here is what is printed. This seems a better compromise between both.

However, the ‘best’ sampling position really depends on the geometry of the object

and the type of error the user is ready to have.
Many slicers simply sample at the middle of the slice though, which avoids

complications and produces reasonable results.

12



Minimizing volume error

* Optimization
— Minimize volume error?

* Variables: N —a=

— Object orientation! Do __ |
— Slice thicknesses '

— Slice plane locations

Of course this entire process can be seen as an optimization problem.
There are several variables. An important one is the orientation of the object! For a
simple rectangle, the vertical orientation of course gives a perfect results, while any

other will result in errors. Of course, on most complex objects this will be a tradeoff.

Other variables are slice thicknesses, and the location where the slice planes are
sampled.

As we have already seen, making slices thinner improves the result — it reduces the
error —however this requires significantly more print time.

13



Adaptive slicing

Same number of slices

Lefebvre & Claux, 2015

Therefore a different approach has been investigated. The idea is that some parts of
the object might produce less errors than others.

In ‘easy’ regions thick slices can be used, whereas smaller slices will be used in more
difficult regions.

14



Adaptive slicing

[Cute Octopus Says Hello (MakerBot) / CC BY 3.0]

Lefebvre & Claux, 2015

Here is a printer example using adaptive slices.

Attribution:
http://www.thingiverse.com/thing:27053
http://www.thingiverse.com/MakerBot/about
http://creativecommons.org/licenses/by/3.0/
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Adaptive slicing

[Cute Octopus Says Hello (MakerBot) / CC BY 3.0]

A close up reveals that thinner slices are used on the tentacles, where the surface
becomes almost flat.

Attribution:
http://www.thingiverse.com/thing:27053
http://www.thingiverse.com/MakerBot/about
http://creativecommons.org/licenses/by/3.0/
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Adaptive slicing

* Faster for same precision

* Do not waste time in ‘simple’ regions

* Not so easy to determine best strategy
— See survey by [P.M. Pandey et. al. 2003]
— Recent work: [Wang et. al. 2015]

Adaptive slicing has clear advantages. However, it is not easy to determine the best
strategy and to optimize for slice thicknesses. There are several considerations such
as the precision, the volume error, but also aesthetics of the final part.

There is a lot of work in this area, but | wanted to point this survey by Pandey and
colleagues, as well as recent work by Wang and colleagues regarding adaptive slicing.
These are good entry points into the domain if you are interested.

[P.M. Pandey et. al. 2003]
http://web.iitd.ac.in/~pmpandey/RP_html_pdf/slice_review.pdf

[Wang et. al. 2015]
http://staff.ustc.edu.cn/~Igliu/Projects/2015_AdaptiveSlicing_3DPrinting/default.htm
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Nested slices

In IceSL we also looked into a different type of adaptive slicing. The idea is to
continue using very thin slices on the outside, but use thicker slices inside. Indeed,
most of the time is spent infilling the object!

18



[Pet monster Valentine (andreas) / CC BY-NC-SA 3.0]

TOOLPATHS

3D Printing with Plastic Filament

Attribution:
http://www.thingiverse.com/thing:17204
http://www.thingiverse.com/andreas/about

http://creativecommons.org/licenses/by-nc-sa/3.0/
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Perimeter Shells

Infill

[Pet monster Valentine (andreas) / CC BY-NC-SA 3.0

Lefebvre & ( X, 2015

First, let’s recall the naming conventions for the different paths. We have perimeters
which are the visible part of the object, then shells which are contouring the object
inside, and finally the infill paths which are filling the inside.

Attribution:
http://www.thingiverse.com/thing:17204
http://www.thingiverse.com/andreas/about
http://creativecommons.org/licenses/by-nc-sa/3.0/



Erosion (morphological)

@

Structuring element
(nozzle exit hole)

Slice

The mathematical tool we will use the most for producing toolpaths is erosion.
An erosion is done with respect to a structuring element. In our case this is a disk
having the diameter of the exit hole of the nozzle.

21



Erosion (morphological)

Structuring element
(nozzle exit hole)

Erosion: All points where
structuring element is
entirely included

Lefebvre & Claux, 2015

Given a slice, shown on the right, the erosion of the slice by the element is defined as
the points where the structuring element is fully included within the slice. Here, this
is the green polygon.

There are good libraries to compute such operations on polygons, such as CGAL or
Clipper (http://www.angusj.com/delphi/clipper.php).

22



‘Thin features’

Disappears!!!

Note that following this definition, thin features — part thinner than the nozzle — will
disappear through erosion. We will come back to this later.

23



Perimeter

* Visible part of the filament

Erosion!
* Object contouring

(top view) } ________ 4|

So, given a slice and a nozzle diameter, how do we extract the perimeter toolpath?

First, it is important to realize that when depositing plastic along a path, the track of

plastic goes halfway on either sides of the path followed by the extruder, as shown
left.

Therefore, we should not deposit plastic on the exact contour of the slice, otherwise
the object will get too big by half the nozzle width!

Instead, we erode the slice by a disk having for diameter the nozzle width. The
contour of the resulting polygon is the perimeter path.

24



‘Thin features’

777

But now, let’s come back to thin features. When we do the erosion, features below
the nozzle width simply disappear.

Sometimes this is what you want, because these features are arguably below the
minimum thickness and can be removed.

25



A possible approach

Skeleton

b

But what if you still want these features? Then a possible approach is to extract the
skeleton of the thin parts. This sounds easy, but it is not as skeleton can be difficult to
compute.



A possible approach

However, once you get the skeleton you can use it as an additional toolpath.

27



Arbitrary decision (user?)

Whether this is a good idea or not is probably up to the user to decide!

28



Shells

Note the gaps
* More of the same

o A

Might become thin

A Y,

Once we have the perimeter, we are ready to extract a number of shells. We use

erosion again.
Note how the inner part might become thin. The thin feature problem will

unfortunately appear very often when trying to fill the inside.

Also note that we are leaving small gaps in sharp corners. One possible way to fill
these is to push slightly more plastic than exactly required.
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Infills

* Top / bottom covers

* Inside
— Full infill (very robust, slow, lots of plastic)
— Sparse infill (save plastic and time, less strong)

Once we have perimeters and shells, we are ready for infilling.

There are two types of infill. The first is used on tops and bottoms. This infill produces
covers such that the inside of the object is not visible through the ‘top’ of the slices.

The second type of infill is used inside the object. With opaque plastic this is
completely hidden from view.



100% Infill

In purple you can see a typical full infill. The idea is to produce a raster pattern
covering the inside.
This seems easy enough, however ...
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100% Infill

?7?

... some difficulties appear again due to thin gaps.
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Flow control

 Limited change of thickness
Might not adhere

100% 50% 25%

One idea to fill-in these gaps is to play with plastic flow. By changing the flow the
‘thickness’ of the plastic track tends to become smaller.

However, under some threshold plastic will stop exiting the nozzle continuously, so
this idea should not be pushed too far.
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100% Infill

Here is how a smaller plastic track can be used to fill-in the gap. Again this is just a
straight segment, pushing less plastic than usual.
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Speed

Faster!

Both axis work together: better acceleration

As a side note, keep in mind that using angled segments can actually print faster
since the acceleration of both axes is combined.



Sparse Infill

* Simple approach

Now let us discuss sparse infillings.

A simple idea is to skip one segment every N. Here, a 50% infill, keeping only half the
infill segments.

The direction is typically alternated between X/Y every other layer to make the part
slightly stronger.



Squish!

Sparse Infill

1

|

Still, this type of infill will not produce strong prints, and the prints might be easily

squished.
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Better:

Sparse Infill

Here is a much better infill pattern.

There is a much larger variety of possible infill patterns, and a lot of slicer include

exotic infillings.
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Best sparse infill ?

Tradeoff between:
— Plastic
—Time
— Strength

Recent work:
— [Luet. al. 2014] “build to last”

Of course a key question is what is the best infill? This is a tradeoff between print
time, plastic use and part strength.

For a recent work on the topic please refer to this paper:
[Lu et. al. 2014]
http://vr.sdu.edu.cn/~lulin/3DP/build-to-last.html

In this work the infill pattern is optimized to make the final print stronger.
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PATH ORDERING

After generating toolpaths for the
different parts of a print (shells, infill,
supports, etc), a single, fully ordered
toolpath must be generated

Path ordering heuristics are used that
promote structural integrity and print
quality, and reduce print time

Dinh & Gelman, 2015
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© PATH ORDERING
HEURISTICS

+ Reducing print time
- Start at point closest to the last

- Contiguous regions of a given type will be printed
completely before moving on to other regions

« Print quality
- Avoid crossing over exterior parts (roofs)

« Structural integrity
+ Shells are printed first before infill
+ Adjacent shells are printed innermost to outermost
« Holes are printed before outlines

Dinh & Gelman, 2015
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PATH ORDERING

QP ©r

Dinh & Gelman, 2015

We print each island completely before moving onto the next. Within each island, we
print all of the shells inner-most first, then all of the infill.

The shells are labeled A to F. Notice how A, D, and E are outer shells and B, C, F are
inner shells. Shells are done inner to outer so that out-ward shells can attach the in-

ward shells for more stability. This relative order matters only for shells that are in
contact.

Here's how we satisfy this requirement.
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Build a tree out of the loops that make up the shells. Loop X is a child of loop Y if X is

PATH ORDERING

Dinh & Gelman, 2015

inside Y using the even-odd test. Traverse this tree depth-first.

The only choices to be made:
- Todo a shell on the way down or on the way up?

In which order to traverse siblings?
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PATH ORDERING

Dinh & Gelman, 2015

Start at the root. There is exactly one child. We want to do shells inner-most first. B is
an inner shell and A is an outer shell. A has to be done in the way up.
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PATH ORDERING

: <

QP ©r

Dinh & Gelman, 2015

B has multiple children. How do we chose an order?
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PATH ORDERING

Dinh & Gelman, 2015

Which loop is closest to the previously printed point? This will be the last point of the
previous layer or of another island. Assume for this example that C is closer.

39



PATH ORDERING

A
B

OO

QP ©r

OmOS

Dinh & Gelman, 2015

Cis aninner shell and D is an outer shell. C has to be done on the way down.
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PATH ORDERING

OO

B
QP ©r

OmON

Dinh & Gelman, 2015

Cis the first shell to be printed.
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PATH ORDERING

OO

B
QP ©r

OmON

Dinh & Gelman, 2015

D has no children. Print it next.
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PATH ORDERING

B
QP ©r

Dinh & Gelman, 2015

We continue the depth-first traversal...
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PATH ORDERING

B
QP ©r

<,
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PATH ORDERING

Dinh & Gelman, 2015
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PATH ORDERING

Dinh & Gelman, 2015

46



PATH ORDERING

QP ©r

Dinh & Gelman, 2015

The same procedure is done for the other sub-tree.
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PATH ORDERING

Dinh & Gelman, 2015

For any node, if we did not chose to print it on the way down, we print it on the way
up, after all of its children have been traversed.
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PATH ORDERING

QP ©r

Dinh & Gelman, 2015

This means B is printed 5th, after C, D, F, and E.
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PATH ORDERING

A
: (23D
QP © &
1 1
1 1
Dinh & Gelman, 2015

Finally...
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PATH ORDERING

Slo

B
QP ©r

Dinh & Gelman, 2015

The outermost shell, A, is printed last.
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PATH ORDERING

QP ©r

PP

Dinh & Gelman, 2015

Final order for printing:
C,D,FEB,A
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BUILD PLATE ADHESION

3D Printing with Plastic Filament

53



© BUILD PLATE
ADHESION

* Increase build plate adhesion
- Easy to remove from build plate
- Easy to remove from object

« No leveling on the Replicator Mini

Dinh & Gelman, 2015

Once we’ve loaded our 3D model, we can start slicing. And the first layer is most
often a raft.

Rafts were developed to solve warping on Rep2. Warping occurs as the plastic cools
and contracts, and it’s most apparent with objects that have a large footprint.
Contraction typically occurs at the ends.

The goals of rafts were to increase build plate adhesion to prevent warping. But it

had to be easy to remove from the build plate and easy to remove from the object,
so that you don’t get scarring on the object surface.

As an added benefit, it helped with the Mini which has no leveling. It allowed us to
have non-parallelism of the plate to within 1.6mm.

54



REMOVABLE RAFTS

First raft layer comprised of thick filaments for easy removal,
and widely spaced with short runs to prevent warping

Dinh & Gelman, 2015

First, we have thick filaments with wide spacing for easy removal from build plate.

Reduce warping — no straight line longer than specified amount. This zigzag pattern
are short runs.

Adhesion to object’s first layer prevents object itself from warping.
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REMOVABLE RAFTS

Two solid layers complete the raft

Dinh & Gelman, 2015

Next the solid layers of the rafts are printed — typically 2 layers.
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REMOVABLE RAFTS

First layer of object is drooped onto raft to
reduce bonding between raft and object

Dinh & Gelman, 2015

Finally, we start printing the object itself.

For an effective raft, the bonding between the raft and the object must be reduced
such that there will be no scaring when the raft is removed from the object. But at
the same time, there must be sufficient adhesion to ensure that the object itself does
not warp. This bonding may be reduced by additional cooling time and by applying
active cooling (fan) on the top surface of the raft.
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CONFIGURABLE RAFTS

- Raft layers
- Base (zigzag)
« Interface
- Surface

« Configurable settings for each
« Number of layers
« Density
« Orientation
« Thickness

- Size and spacing of zigzag (base only)

Dinh & Gelman, 2015

The base layer is for maximum adhesion and to avoid warping.

Interface layers are to absorb any defects not absorbed by the base —e.g., ripped
pieces of tape, or if homing was too close.

Surface layers should create an even surface on which object first layer is drooped.

Reference:

https://www.makerbot.com/support/new/04_Desktop/Knowledge Base/
Using_Custom_Slicing_Profiles/13-MakerBot_Slicer_settings: Rafts
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MULTI-MATERIAL PRINTING

3D Printing with Plastic Filament
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Dual extrusion for Multi-material

The Replicator
=

In this part of the course we are going to focus on multi-material filament printers.
For instance, this printer, the Makerbot Replicator 1, features two different
extruders.

Most of the ideas | present here originate from our 2014 publication ‘Clean Color’
http://webloria.loria.fr/~jhergel/cleanColor.pdf



Dual extrusion

Carriage

Right Extruder

Left Extruder

Lefebvre & Claux, 2015 2

The extruders are mounted on a single carriage, and two different plastic filaments
can be used on the same print.

You can use different colors, or different plastics such as rigid / soft materials.



Dual Color Print, Symbols

Carriage

Left Right
Extruder Extruder

In this presentation we will use these symbols to represent the carriage and the
extruders



Slicer

* Generate toolpaths

www.loria.fr/~slefebvr/icesl/

Lefebvre & Claux, 2015 4

Let’s see how the slicer is going to deal with dual extrusion. We will be using lceSL in
this case.



Perimeters
[Pet monster Valentine (andreas) / CC BY-NC-SA 3.0]

P . Shells

The slicer will generate two sets of toolpaths in each slice, one for each material.

Of course there are challenges! For instance, the ordering and the way the carriage
travels will be even more important than when printing with a single material.

Attribution:
http://www.thingiverse.com/thing:17204
http://www.thingiverse.com/andreas/about
http://creativecommons.org/licenses/by-nc-sa/3.0/



Lefebvre & Claux, 2015 [Two Color World (m6mafia) / GNU-GPL

Indeed, several defects can occur without special considerations.

The main issue is oozing, which we have already mentioned earlier. When an

extruder stops printing, the melted plastic inside leaks out. In single material prints
the effect is relatively limited. With dual printing, one extruder might be idle for
several seconds, and oozing can be very significant.

Attribution:
http://www.thingiverse.com/thing:11660
http://www.thingiverse.com/mé6mafia/about
http://www.gnu.org/licenses/gpl-2.0.html



Oozing

Zippers (single and
dual)

Lefebvre & Claux, 2015 [Two Color World (m6mafia) / GNU-GPL

Besides oozing, another defect that appears on both single and dual prints are
zippers. These occur when the extruder stops printing a perimeter. Very careful
calibration can limit these, but they can be seen on most printed parts.

Attribution:
http://www.thingiverse.com/thing:11660
http://www.thingiverse.com/m6émafia/about
http://www.gnu.org/licenses/gpl-2.0.html



Defects: Holes

Lefebvre & Claux, 2015 Robot-ice, YouMagine, Ultimaker 8

One last issue are holes: these appear because the plastic that oozed from the
extruder is now missing! So when the extruder restarts, the plastic is not deposited as
expected.



Typical approaches

* Zippers
— Watertight zippers [Stratas

* Oozing
— Cleaning station [Stratasys], tower |
— Cool idle extruder [Stratas
— Drawback: time

An approach proposed by Stratasys to reduce zippers is to start and end print paths
inside the print.

Regarding oozing, typically solutions are to use a cleaning station and reduce the
temperature of the idle extruder. However this takes a long time, since the extruder
first moves to the cleaning station, is shutdown, and then a delay is necessary to
ensure all the plastic is gone. This is to be done once for each dual print layer. Other
solutions, as mentioned before, involve a tower or walls to protect the print. These
strongly reduce the defects but do not remove them entirely.



* Analysis
— Qozing
— Holes
— Zippers

* Improvements

— Rampart

* Results

Outline

— Azimuth Optimization

— Deal With Zippers

Let’s now have a closer look at the defects, before we explain what can be done in

more details
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Analysis: Oozing

Lefebvre & Claux, 2015 11

Here is a picture taken during a dual printing session, just to show how significant
oozing can be.
Several millimeters of plastic are dangling from the extruder after only a few seconds.
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Analysis: Oozing

[Pet monster Valentine (andreas) / CC BY-NC-SA 3.0]

Lefebvre & Claux, 2015 12

The result are all these little blobs of plastic that are deposited on the other color.

These cannot be trivially cleared since the materials mix when they are fused
together.

Attribution:
http://www.thingiverse.com/thing:17204
http://www.thingiverse.com/andreas/about
http://creativecommons.org/licenses/by-nc-sa/3.0/



e Case A

Analysis: Oozing

e CaseB

There are in fact two distinct cases where oozing is problematic.

13



Analysis: Oozing

e Case A e CaseB

The first case is during print moves, when one extruder (red) prints and the other
(blue) crosses the just printed path. This leaves a blob of plastic. It is a difficult case

because we cannot really change the way the carriage moves: it has to deposit plastic
along the red path.



Analysis: Oozing

e Case A e CaseB

. .

A second case is during travel moves: here we cross the blue part to reach the red
part, but the red extruder is likely to deposit plastic along the blue perimeter. The
case is slightly easier, since we can change the way the carriage travels.



Analysis: Holes And Zippers

* Holes * Zippers
— Consequence of Oozing — When extruder starts

Lefebvre & Claux, 2015 16

We will further consider holes and zippers, and how to reduce their effect.
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Lefebvre & Claux, 2015

Reducing these issues

* Rampart
* Deal With Zippers

Ok, let’s have a closer look at what we can do to reduce such problems,

17



Azimuth Optimization

Red Head crosses Blue Perimeter

’f\/

—_—

A
pS

We observed that a simple change of orientation — azimuth angle -- can greatly
improve quality.

Printing With Left extruder

When the blue extruder prints, the red extruder will move for some time just above
the blue region. This is the effect we want to minimize.
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Azimuth Optimization

W

—_—

Red head motion as blue head prints *

We can easily compute the region spanned by the red extruder when the blue prints.
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Azimuth Optimization

Overlap

#h =

Our goal is to minimize the overlap region.
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Azimuth Optimization

Nefdete bedtar
optdindzation

W

—_—

g
@

—

One simple way to do that is to change the orientation of the print!
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Azimuth Optimization

Minimize the
volume of this
overlap

* Intersection computed by CSG for a fixed W/)
number of angles '

* Fast GPU Implementation

(3 seconds on Robot-Ice Model) ‘

Across all slices, this overlap region turns into a volume. We can compute this volume
by fast boolean intersections between the object, and a translation of the object. As
we will later see, our software is able to perform such operations very rapidly.
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Azimuth Optimization
Without With

Overlap in green

Here you can see on the left the overlap region in green before optimization, and
after optimization. This alone greatly reduces the chance of oozing.
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Azimuth Optimization

Without With

Not always enough

Lefebvre & Claux, 2015

Here is a comparison on final prints.
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Reducing these issues

* Azimuth Optimization

* Zippers

Lefebvre & Claux, 2015

We will now discuss a second ingredient, which is the rampart.
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Rampart

* Catch ooze before extruder crosses the object
* As close as possible from the object
* Built layer by layer during the print

The idea is similar to the oozing walls discussed earlier. We want to catch ooze before
it reaches the surface. For this, we print a rampart surrounding the shape. This
rampart will catch ooze just before the surface.
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Wiped ooze

Here you can see the rampart after printing the cones.
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Lefebvre & Claux, 2015

Limitation

* The shape of the rampart

—

28

One limitation of the vertical rampart is that the shape of the rampart tends to be far

away from the object in some cases.
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Better!

Tight printable enclosures for additive manufacturing
S. Hornus, S. Lefebvre, J. Dumas, F. Claux

See also CURA ooze shields which are closely related.

29

Lefebvre & Claux, 2015

Here is a novel way to generate the rampart which makes it much closer to the

surface, and faster to print.
https://hal.inria.fr/hal-01141706/file/RR-8712.pdf

CURA also feature ooze shields which use a similar approach to stay close to the
surface.
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Reducing these issues

* Azimuth Optimization
* Rampart

Lefebvre & Claux, 2015

Finally we need to find a way to deal with zippers.
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Zippers

Perimeters are cyclic

Position of start/end point is free 6

Change zipper locations
They can be hidden

Zippers mostly occur along perimeters, which are —in our software — always cycles.
Therefore we can freely choose the start/end point for printing a perimeter.
We can thus hope to hide the zippers in less visible regions of the print.
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Zippers

Perimeters are cyclic
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Change zipper locations
They can be hidden

Lefebvre & Claux, 2015

To determine what’s visible or not we rely on a Computer Graphics technique called
Ambient occlusion.
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Zippers
* Ambient Occlusion [Zhukov*98]

— Used to enhance realism ) &
of a render

— Darker zones are less visible N

[Kitten (MBCook) / CC BY-SA 3.0]

— Hide defects in occluded zones

This computes a map along the surface which is darker when it is less visible and
brighter otherwise. This correspond to how many viewpoints can actually see each
surface points. We can compute this quickly on modern GPUs.

Attribution:
http://www.thingiverse.com/thing:12694
http://www.thingiverse.com/MBCook/about
http://creativecommons.org/licenses/by-nc-sa/3.0/



With azimuth only

_ ol

Lefebvre & Claux, 2015

Results

With our technique

Here are some results, note the significant improvement. These objects have not

been cleaned in any way.
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Results

Two other results in challenging cases that use very contrasted colors.
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Results

Without our With rampart
technique only

[Jillian's Rose (Bob_East) / CC BY-SA 3.0]

With our
technique

A comparison using the various ingredients.

Attribution:
http://www.thingiverse.com/thing:26417
http://www.thingiverse.com/Bob_East/about
http://creativecommons.org/licenses/by-nc-sa/3.0/
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Lefebvre & Claux, 2015

Remember the Earth?

[Two Color World (mémafia) / GNU-GPL

The earth model was quite bad.
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Results: Earth

[Two Color World (m6mafia) / GNU-GPL]

Here is our result.
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Results: Earth

[Two Color World (m6mafia) / GNU-GPL]

Another view.
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Results: Earth

‘\

[Two Color World (m6mafia) / GNU-GPL]

And another view.
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With Our Technique Without
Lefebvre & Claux, 2015 [Kitten (MBCook) / CC BY-SA 3.0]

Our approach also removes most zippers — in fact they are not removed but hidden
from view. This greatly improves the finish of shiny surfaces.

Attribution:
http://www.thingiverse.com/thing:12694
http://www.thingiverse.com/MBCook/about
http://creativecommons.org/licenses/by-nc-sa/3.0/
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Dual versus mixing

* Mixing is possible!
— Dithering style

Dual-Color Mixing for Fused Deposition Modeling Printers
[Reiner et al, 2014]

— Layering style

Print and picture by S. Lefebvre

So far we only looked at printing one color or the other. There are ways to mix the
two colors!

Reiner and colleagues presented a very interesting approach were dithering is used
to bring one color visually in front of the other.

https://cg.ivd.kit.edu/publications/2014/DCM/DualColorMixing.pdf

We also experimented with a mixed layering approach, were the plastic flow is
modified to deposit each layer twice, in proportions such that the total amount of
plastic matches what’s normally required. By carefully calibrating the printer color
gradients can be obtained, as shown here.
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MODELING FOR FILAMENT-BASED 3D
PRINTING

10:30am — 11:45am

60



[Minotaur (ajolivette) / CC BY-SA 3.0]

OVERHANGS AND SUPPORTS

Modeling for Filament-Based 3D Printing

Attribution:
http://www.thingiverse.com/thing:46646
http://www.thingiverse.com/ajolivette/about

http://creativecommons.org/licenses/by-sa/3.0/
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OVERHANGS

Layers extending beyond layers below will fall down

Dinh & Gelman, 2015

Overhangs are parts of the model where the layer above extends well beyond the

layers below, and gravity will cause the printed plastic to droop down, like printing
over air.

Attribution:
http://www.thingiverse.com/thing:1978
http://www.thingiverse.com/jmil/about
http://creativecommons.org/licenses/by-sa/3.0/
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SUPPORTS

Layers extending beyond layers below will fall down
They need to be Supported

Dinh & Gelman, 2015

Overhangs need to be supported so that we are not printing over air.

Attribution:
http://www.thingiverse.com/thing:1978
http://www.thingiverse.com/jmil/about

http://creativecommons.org/licenses/by-sa/3.0/
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SUPPORTS

20 30 45 60
4 < A

MB default: Supports are printed for all angles > 68
degrees from vertical

Dinh & Gelman, 2015

However, if the overhang is small enough, then it will not droop down, and we do not
need to support such overhangs.

This is typically determined by the angle formed between the overhang and the
closest point in the layer below.

Our default is to leave all angles < 68 degrees from vertical unsupported.

References:

https://www.makerbot.com/support/new/04_Desktop/Knowledge_ Base/
Using_Custom_Slicing_Profiles/15-MakerBot_Slicer_settings: Support

Attribution:
http://www.thingiverse.com/thing:1978
http://www.thingiverse.com/jmil/about

http://creativecommons.org/licenses/by-sa/3.0/
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© FILAMENT-BASED
SUPPORT GENERATION

- Factors to consider
« Angle at which supports begin
« Support pattern
« Density
« Space between model and supports

« Models are printed from the bottom-up,
but support generation needs to account
for floors in slices above

Dinh & Gelman, 2015

Pattern often affects removability

Denser supports will support more of the floor, but uses more plastic, takes longer to
print, and may be more difficult to remove.

Space between model and supports:
- More space makes it easier to remove supports, but will mean that less of the floors
above will be supported which could result in a drooping floor.

References:

https://www.makerbot.com/support/new/04_Desktop/Knowledge Base/
Using_Custom_Slicing_Profiles/15-MakerBot_Slicer_settings: Support

65



SUPPORTS

Filament-based supports result in simpler toolpaths

Dinh & Gelman, 2015

Unlike many other slicers, ours does not model supports as a mesh. Instead, supports
are just filaments loosely laid down — this makes the toolpath simpler (no shells and
fewer retractions).

The object surface is also more uniformly supported, unlike cone-based supports
where the contact is a point.

This example shows a change in version 2.2.0 last fall where we significantly reduced
the amount of support we printed.

References:
http://www.makerbot.com/blog/2013/06/12/makerware-2-2-0-preview/
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© SUPPORTS:
MESHMIXER

[Bunny Peel with meshmixer
Support (meshmixer) /
CC BY-SA 3.0]

Filament-based supports can result in longer print
times and more plastic usage, but are less prone
to falling support columns

Dinh & Gelman, 2015

Filament-based supports may use more plastic and take longer to print than
alternative approaches, such as MeshMixer and INRIA’s scaffolds.

One concern with these narrow column-based supports is that they will tend to fall
over during printing.

References:

“Clever Support: Efficient Support Structure Generation for Digital Fabrication”, Juraj
Vanek, Jorge A. G. Galicia, Bedrich Benes, Computer Graphics Forum 33(5): 117-125

(2014)

Attribution:
http://www.thingiverse.com/thing:131054
http://www.thingiverse.com/meshmixer/about

http://creativecommons.org/licenses/by-sa/3.0/
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AVOIDING SUPPORTS

[Print by Stephen Detsch, MakerBot]

Optimize overhangs

Dinh & Gelman, 2015

It is possible to construct a model that prints completely unsupported, exploiting the
angle at which gravity is overcome by adhesion and the contraction of plastic.



© AVOIDING SUPPORTS:
BRIDGING

Omit supports under bridges

Dinh & Gelman, 2015

Another way to reduce supports is to print bridges. These are areas of the surface
that sit over open air, but are short enough and are surrounded by parts of the shell
which can be used to anchor a bridge. The bottom of the object is shown in this
example.

Sometimes fails — can be due to temperature and contraction properties of plastic.



BRIDGING FACTORS

« Anchors: where bridges attach to
islands of the layer below

« Span direction: given a bridgeable floor
area, in which direction should bridges
extend?

« Maximum length of bridges

Dinh & Gelman, 2015
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BRIDGE ANCHORS

« Location: where should anchors
intersect shells?

« Size of anchoring islands

=

Islands in yellow with grey shells
Anchors in blue with a bridge in between

Dinh & Gelman, 2015

The start and end of bridges are typically on the shell. The location of anchors and
making room for them on the shells are required.

Anchoring island must be wide and deep enough to support a bridge

A successfully bridged extrusion is anchored at both ends. An anchor is the portion of
the layer below that is adjacent to the region to be bridged.
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BRIDGE ANCHORS

« Location: where should anchors
intersect shells?

« Size of anchoring islands

=

Islands in yellow with grey shells
Anchors in blue with a bridge in between

Dinh & Gelman, 2015

Anchors must have sufficient depth for the extrusions of the bridge to attach
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BRIDGE ANCHORS

« Location: where should anchors
intersect shells?

« Size of anchoring islands

Islands in yellow with grey shells
Anchors in blue with a bridge in between

Dinh & Gelman, 2015

Islands that are too small can’t support bridges
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BRIDGE ANCHORS

Dinh & Gelman, 2015

This is a cross section view of a hypothetical model as seen from the side. The
potential bridge is shown in green. The anchor on the left is deep enough for the

bridge filaments to attach. The anchor on the right is shallow and would not result in
a well attached bridge.



© BRIDGE SPAN
DIRECTION

« Goal
« Maximize anchored extrusions

+ Affected By
« Shape of the region to bridge

« Size, shape, and arrangement of
anchors

Dinh & Gelman, 2015

In other words, we want to maximize good bridges that don’t collapse. For a given,
potentially bridgeable, region, different directions of the bridge span will result in
different areas being bridged, and we essentially want to maximize that area while

ensuring that the bridge doesn’t collapse.

The start and end of bridges are typically on the shell. Programmatically computing
the location and making room for bridge anchors on the shell(s) is what is required to
implement bridges.

Anchoring island must be wide and deep enough to support a bridge
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© BRIDGE SPAN

DIRECTION
'\ ’ E\m l\

A B C

Dinh & Gelman, 2015

Top:
A) A simple example of bridging — two straight aligned anchors

B) A slightly more complex case of bridging. Here, the anchors are S shaped

C) In this case, the bridge would be supported by three anchor regions.

Bottom:

These are top-down views of the model as seen by the bridging algorithm. Anchors

are marked in red and the region to be bridged is marked in green.

A) In this case, bridge filaments would be aligned horizontally.

B) Like in the previous example, the bridge filaments would be aligned horizontally.
Notice that the portion of the region that is considered anchored has a paler green
color. The part of the region near the top of the image is not considered to be
anchored sufficiently.

C) As in the previous examples, the filaments would be arranged horizontally. Notice
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Typical Approach

« Makerware
v'Reliable
x High material usage
x Difficult to remove

Lefebvre & Claux, 2015

[Minotaur (ajolivette) / CC BY-SA 3.0]

The standard approaches work great, but tend to use a lot of plastic.

Attribution:
http://www.thingiverse.com/thing:46646
http://www.thingiverse.com/ajolivette/about
http://creativecommons.org/licenses/by-sa/3.0/




Typical Approach

 Makerware
v'Reliable
x High material usage
x Difficult to remove

Lefebvre & Claux, 2015 [Minotaur (ajolivette) / CC BY-SA 3.0]

Here is an example of typical support.




Typical Approach

 Makerware & Others
v'Reliable
x High material usage
x Difficult to remove

Lefebvre & Claux, 2015 [Minotaur (ajolivette) / CC BY-SA 3.0]

4

They are however very reliable, which is of course very important for consumer-level
products.




Recent Work

* MeshMixer (Autodesk), Vanek et aI [2014]
v'Low material usage

x Imbalanced structure

x Requires manual tuning
x Subtle print parameters

Lefebvre & Claux, 2015

Some recent work attempts to reduce significantly material usage. This is an example
of MeshMixer supports. There are very interesting because they support large
surfaces while being very small. Unfortunately, these structures are not balanced and
can fail during printing, as we will see later.




Trees — Pros and Cons

v Support/length ratio % Sensitive to torque

f??

Lefebvre & Claux, 2015

We measure the effectiveness of a support structure by the ratio of its length to the
number of supported points. Trees have a very good ratio. Unfortunately, as they

grow they become very sensitive to torque, and start oscillating which can lead to
rupture.




Think With Bridges

v Support/length ratio v'Resistant to torque

N ezl

?

Lefebvre & Claux, 2015

Instead, we propose to use bridge structures. They also provide a good support ratio,
but are much less sensitive to torque.




Think With Bridges

.1,

Lefebvre & Claux, 2015

It seems, however, counter intuitive to print bridges since they are themselves in
overhang and not supported.




Printing Bridges

Source: http://youtu.be/wK2APNwEoSk

Lefebvre & Claux, 2015

As we have discussed earlier in the course, this is actually a special case where
support is not required, as illustrated here.




Lefebvre & Claux, 2015 10

The video on the left shows the behavior of the tree. Notice the large oscillating
motions. On the right the equivalent bridge structure. The structure is much more
stable. The same quantity of plastic is used in both, and they support the same area.

10



Material usage

v Competitive to
trees

I]] = 89.7mm

Il = 112mm

Lefebvre & Claux, 2015 11

An important consideration is to understand when each structure is at an advantage.
At low heights, the bridge structures are actually smaller than the trees supporting a
same area.

11



Material usage

v Competitive to ...Up to a certain

xtgeé @@eight

Il = 14'20"“" Il = 121.7mm
Lefebvre & Claux, 2015 12

However, as the structures become taller, the tree grows a single pillar where the
bridge grows four. The tree therefore becomes more competitive again. However, at
such heights it also becomes much less stable.

12



Method Overview

1. Overhang detection
2. Bridge synthesis

[52mm scale Goblin (TimePortalGames) /
CC BY-NC-ND 3.0]
Lefebvre & Claux, 2015

13

Here is the global overview of our method. We first detect the points that required
support. Since we already talked about this earlier, we won’t go into details here.
We will focus on the second part, the bridge structure generation.

Attribution:
http://www.thingiverse.com/thing:347046
http://www.thingiverse.com/TimePortalGames/about
http://creativecommons.org/licenses/by-nc-nd/3.0/
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Method Overview

1. Overhang detection
2. Bridge synthesis

[52mm scale Goblin (TimePortalGames) /

CC BY-NC-ND 3.0]
Lefebvre & Claux, 2015

14

We will focus on the second part, the bridge structure generation.

Attribution:
http://www.thingiverse.com/thing:347046

http://www.thingiverse.com/TimePortalGames/about
http://creativecommons.org/licenses/by-nc-nd/3.0/
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Scaffolding: Problem Statement

 In - Required Points ?-\“::wﬁ
« QOut - Valid '
Scaffolding

1L

- Global constraint

Lefebvre & Claux, 2015

As input we are given a number of points that require support. Our goal is to
generate a structure which is valid — that is where every point is supported by a pillar
or a bridge, and where every bridge extremity is supported by a pillar. The pillars are
supported by other bridges, by the ground, or by the object itself.

15



Goal: Minimal Length Scaffolding

Gain > 0 Gain < 0

Lefebvre & Claux, 2015 16

We also seek to minimize the length of the structure. Intuitively we want to snap
pillars onto bridges, to reduce the number of pillars touching the ground. However,
this is not always beneficial as shown on this last case. The cost function takes into
account the resulting length of the structure.

16



Our Approach

* Finding a global optimum is not easy
« Heuristic Greedy Algorithm

\

Lefebvre & Claux, 2015 17

The problem resembles minimum rectilinear Steiner trees, but has more constraints.
While the Steiner tree problem is known to be NP-hard, we have no proof yet that
our problem is NP-hard as well. For now we conjecture that this is the case and rely
on a heuristic algorithm.

If someone in the audience is interested by looking at a proof, we’d be happy to
discuss this further!

17



F I

Algorithm Overview
1. Required Points o

e

Lefebvre & Claux, 2015
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Our algorithm iteratively improves the bridge structure. It starts from the set of
points to be supported, shown here in red.

18



Algorithm Overview

" .\
ngm—"

2. Candidate Bridges "

Lefebvre & Claux, 2015 19

We then efficiently produce a set of candidate bridges. | will explain how in a few
slides.

19



Algorithm Overview
2. Candidate Bridges

| A

Lefebvre & Claux, 2015 20

Within this set we identify the bridge giving the best improvement at this step.

20



Algorithm Overview

3. Score = Gain — kI

Lefebvre & Claux, 2015 21

For this, we use a gain function defined as follows. We consider the number of
supported structures above, and estimate the bridge pillar lengths by assuming they
will go down all the way to the ground.

This is an approximation since they may later be snapped to other bridges, but this is
a worst case assumption.

21



Algorithm Overview

Score = Gain — kI
4. Greedy Selection

k

max

/max

Lefebvre & Claux, 2015

22

We select the bridge giving the best gain, that is the largest reduction in structure
length.
If no such bridge exist, the structure is final.

22



Algorithm Overview

- o

Score = Gain — k-/

max e

5. Repeat i

lmax | — e,

Lefebvre & Claux, 2015

Once the bridge is selected, we remove all supported points from the problem and
insert the bridge extremities as points requiring support. This gives us back the same
problem as before, but with less points to support. We iterate the algorithm until no
improving bridge exist.




Candidate Bridges Generation

T

“uprh

Lefebvre & Claux, 2015

24

| will now describe how we produce the candidate bridges. Since this step is done
often it has to be fast.

24



Candidate Bridges Generation

Lx

Lefebvre & Claux, 2015
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For now, let us consider a single orientation, here we search for vertical bridges. The
left shows a 2D view as seen from above, while the right shows the 3D view.
The two purple segments are already inserted bridges, the red dots are points to

support.

25



Candidate Bridges Generation

A
~
/

y

Lox

Lefebvre & Claux, 2015
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In this case a good possible bridge is a bridge that would share a pillar with the two
existing ones. This requires extending the existing bridges.
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Candidate Bridges Generation

y .

e

Lefebvre & Claux, 2015
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To detect such bridges, we sweep a plane from left to right, as illustrated by the

vertical line on the left.
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We sweep the plane and stop in a number of geometric events. The events are all the

points to be supported, the bridge extremities as well as the extremity of segments

extending the bridges. These allow bridges to grow further. We consider all
intersections between segments as events.

28



Candidate Bridges Generation
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Lefebvre & Claux, 2015

Segments are also added around points, so that they are allowed to be snapped to
bridges by short angled pillars.
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Candidate Bridges Generation

,.""'.-. UM

2

el

" e

-.. =1

-, . e -

ﬁ ' .':.:.:::?;
e,
N, -

0

30

Lefebvre & Claux, 2015

Here is an illustration of snapping a point to a nearby bridge by an angled pole. This is
important, as there is otherwise very little chance that multiple points would align

with bridges.
We limit the length of the angled pole to avoid instabilities.
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Candidate Bridges Generation
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We sweep the plane through events.
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Candidate Bridges Generation

Lefebvre & Claux, 2015

~.

“uprh

o .'g;::r;;
UG,
Mrta,,, r

R

32

Here is the first considered event. No interesting bridge can be produced.
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Candidate Bridges Generation

Lefebvre & Claux, 2015
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On this second event, a bridge candidate is added, connecting the bottom point to

the top bridge extremity.
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Candidate Bridges Generation

~.

Lefebvre & Claux, 2015
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This third event also produces a bridge candidate.
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Candidate Bridges Generation
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Lefebvre & Claux, 2015 35

This fourth event is particularly interesting. It proposes a candidate bridge that snaps
together the two existing bridges, as well as the bottom point. It is likely to be a very
good candidate.
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Candidate Bridges Generation

Lefebvre & Claux, 2015 36

The sweep is performed in several directions.

36



Candidate Bridges Generation

Lefebvre & Claux, 2015

37

We use 8 directions in our implementation,

that are explored in parallel.

37



Candidate Bridges Generation
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Lefebvre & Claux, 2015 38

This provides the complete set of candidates.

38



Lefebvre & Claux, 2015

Algorithm Overview

39

Let’s see how the algorithm iteratively builds the scaffolding for the minotaur model.
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Algorithm Overview

L

Lefebvre & Claux, 2015
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The blue lines show the temporary pillars used for the gain computation.
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Algorithm Overview
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Lefebvre & Claux, 2015

Algorithm Overview
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Algorithm Overview
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Algorithm Overview
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Lefebvre & Claux, 2015

Algorithm Overview
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Lefebvre & Claux, 2015

Algorithm Overview
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Algorithm Overview
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Lefebvre & Claux, 2015

Algorithm Overview

48

This is the final step. No improving bridge exist, so the algorithm will convert all

temporary pillars into final pillars.
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Lefebvre & Claux, 2015

Algorithm Overview
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This is the end result.

49



The Road So Far

. v
« Overhang Detection == . =

- Scaffolding Generation ~

« Stabilization
Lefebvre & Claux, 2015 50

So far we have seen how to generate the scaffolding from the overhang points. Our
bridge structures have an additional advantage: they can be used to stabilize a part
during printing.

50



Stability During Printing

Lefebvre & Claux, 2015

51

Here is a toy example. After printing it is stable.

51



Stability During Printing
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Lefebvre & Claux, 2015
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During printing however, the four sides will be in precarious equilibrium. The orange
polygon at the bottom is the base of support. On the right we can see that the center
of masses project outside, which indicates that the four sub-parts are not in static

equilibrium.

52



Stability During Printing

Lefebvre & Claux, 2015

53

These parts might topple under the forces exerted by the extruder.

53



Stability Property (Support)

CoM inside BoS - Static equilibrium
guaranteed

Lefebvre & Claux, 2015 54

Our bridges have an important property: They are always at equilibrium, and any
point supported by them projects within the base of support of the bridges.
(Only exception are the angled poles, but these remain small).

54



Stability Enhancement

Lefebvre & Claux, 2015

55

We therefore use our technique to add artificial support points that are then
stabilized by our scaffolding. The base of support is artificially extended by
introducing additional support points.

This is efficiently computed by sweeping a plane from top to bottom, tracking for
each connected component its center of mass and base of support.

[we will detail this part further]

55



Lefebvre & Claux, 2015

Results

56



Results — Minotaur

wo Q1|

Lefebvre & Claux, 2015 [Minotaur (ajolivette) / CC BY-SA 3.0] 57

Here is the minotaur model, and its support structure. We also have actual printouts
available for closer inspection.

Attribution:
http://www.thingiverse.com/thing:46646
http://www.thingiverse.com/ajolivette/about
http://creativecommons.org/licenses/by-sa/3.0/
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8 cm

Results

Poppy

Lefebvre & Claux, 2015

58

This is a leg of a 3D printed robot. It is important to print it horizontally due to
mechanical properties, and our bridge structure allows for that.
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Results — Hilbert Cube

Lefebvre & Claux, 2015 [Hilbert Cube (tbuser) / CC BY-SA 3.0]

59

wo ¢

On this model we support the points inside without leaning too much on the object.

Attribution:
http://www.thingiverse.com/thing:16343
http://www.thingiverse.com/tbuser/about
http://creativecommons.org/licenses/by-sa/3.0/
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Limitations

« Surface quality

« Computation time

[Star Trek 2009 Enterprise (JackSpectre) / CC BY-SA 3.0]

Lefebvre & Claux, 2015 60

There are some limitations. The bridges can sag during printing, but this never lead to
print failure in all our tests.

The bottom surface quality obviously suffer, an issue shared amongst all techniques.
Of course soluble plastic could be used for the structure, resulting in less damage.

The computation time is quite high, especially when the number of points to be
supported largely increases. We currently investigate ways to group the points before
generating the scaffoldings.

Attribution:
http://www.thingiverse.com/thing:18346
http://www.thingiverse.com/JackSpectre/about
http://creativecommons.org/licenses/by-sa/3.0/
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Print time

* In principle less plastic = faster
» Travel might increase, but travel is fast

 Main issue: Acceleration on small
connectors

Lefebvre & Claux, 2015 61

| would like to conclude with one issue that surprised us at first. Even though our
structures are much smaller, the gain in print time is not always as significant. One
might think that this is due to increased travel time, but a closer analysis reveals that

travel time does not significantly grow.

The main problem stems from the slow acceleration of the print head. When printing
small details, such as the connectors, the carriage never reaches the top speed.

We therefore investigate ways to print better connectors that print faster, without
having to slow down the printer. This is an interesting aspect of print time

optimization.
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Open question
Hybrid approach (trees + bridges)

“Vl\:y /‘ \ k'll' ll lﬂ

[Star Trek 2009 Enterprise (JackSpectre) / CC BY-SA 3.0]

Lefebvre & Claux, 2015

62

Another interesting direction of future work is to consider hybrid approaches, using
trees and bridges. However, to produce reliable trees we believe a good mechanical
model is crucial. Because these structures print at the minimal sizes and at high

speeds, they are usually not very well printed, and cannot be considered as
homogenous isotropic materials, which complicates simulation.

Attribution:
http://www.thingiverse.com/thing:18346
http://www.thingiverse.com/JackSpectre/about
http://creativecommons.org/licenses/by-sa/3.0/
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INTEGRATING SOLID MODELING WITH
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IceSL: GPU accelerated CSG
modeler and slicer

We present now the modeling and slicing engine behind IceSL.



Constructive Solid Geometry

* Modeling operations between solids

http://en.wikipedia.org/wiki/Constructive_solid_geometry

One popular way of modeling objects is to use Constructive Solid Geometry, or CSG.
CSG assembles solids using union, intersection and difference operators into a tree.
You can make complex solids with complex trees. It is relatively intuitive, even for
beginners. For instance, the difference operator is handy to remove matter from an
existing object, such as when holes need to be created off, say, a solid bar. Primitives
can be of any kind, including complex meshes.



module half_dog ()

‘ difference ()

! dog () :
scale (Mult) translate([0,-40,-5])

)

module flegconn ()

(

difference ()

! dog ()
scale(scl) translate((-40,-40,14))

)

module blegconn ()

difference ()

! dog ()
scale(scl) translate((-40,-40,2])
}

module dog ()

scale (Mult)

(
body () ;
translate([0,-15.0,48.4])
translate([-4.6,3.2,28])

cube ([40,100,70]) ;

cube ((80,80,70))

cube ((80,80,70])

rotate ([0,180,0))
rotate([30,90,180))

head () ;

fleg() s

ad This Thing!

translate([(4.6,3.2,28)) mirror([(1,0,0])) rotate([30,90,180)) fleg():
translate([-4.5,3,4)) rotate([30,90,180) bleg();
translate([4.5,3,4)) mirror([1,0,0)) rotate([30,90,180)) bleg():
)
}
(] B ] ) 4 133
Thlng Info Instructions Thlng Files Comments Made Collections
=

Here is the doggie model taken from thingiverse and part its source code.




Made by a 13 years old

long = 100
r = scale(long,30,2) * translate(0,0,0.5) * box(1)

intersize = long/11

pos = -long/2+intersize

spacing = 2

for i=1,10 do
c¢ = translate(pos, @0, @ ) * cylinder( (1+i)/2, 2 )
r = difference( r, c )
pos = pos + (i+1)/2 + spacing + (i+2)/2

end

cn = rotate(90,Y) * translate(o,0,-long/2) * cone(5/2,18/2,long)

emit( intersection(r,cn) )

Lefebvre & Claux, 2015

Writing scripts might seems hard, but here is an example made by a 13 years old
after some basic explanations.



OpenSCAD

difference() {
cube([10,10,10]);
translate([-2.5,0,0]) rotate([30,0,0]) cube([15,10,10]);

}

Lefebvre & Claux, 2015

OpenSCAD for instance, uses CSG trees. This is an example model, with its example
CSG tree source code.



difference() {

cube([10,10,10]);

translate([-2.5,0,0]) rotate([30,0,0]) cube([15,10,10]);
}

Printer

Lefebvre & Claux, 2015

OpenSCAD, like other software applications, evaluates the CSG tree and turns it into a
mesh, which it then gives to the slicer/printer.



difference() {

cube([10,10,10]);

translate([-2.5,0,0]) rotate([30,0,0]) cube([15,10,10]);
}

Printer

Lefebvre & Claux, 2015

To produce the STL mesh file, ready to be printed, OpenSCAD transforms each CSG
tree primitive into a mesh and then applies the CSG operators with these primitives,
from the bottom up and in a recursive fashion up the tree.



difference() {

cube([10,10,10]);

translate([-2.5,0,0]) rotate([30,0,0]) cube([15,10,10]);
}

OpenSCAD
9 minutes

Printer

Lefebvre & Claux, 2015

It takes 9 minutes to generate the final geometry.



difference() {

cube([10,10,10]);

translate([-2.5,0,0]) rotate([30,0,0]) cube([15,10,10]);
}

A few seconds

Lefebvre & Claux, 2015

It would be better to produce a printer-understandable Gcode file right from the
input tree without having to generate a mesh first. This would considerably simplify
the printing process, as generating the mesh is an obvious bottleneck.



Problems

CSG with meshes is difficult (hnumerical issues)
Slicers need well formed meshes

OpenSCAD produces high quality meshes
— Relies on CGAL
— Very powerful, but computationally intensive

Number of triangles quickly increases
— Surface details, internal details, etc.

CSG operations on meshes are very difficult. Many algorithms exist and a lot of them
indeed have numerical issues.

OpenSCAD relies on CGAL to do the CSG operations. CGAL is reliable but is very
calculation intensive.

The number of triangles can quickly grow, which tends to make calculations slower
and slower as CSG operators are being evaluated throughout the tree.

10



lceSL

[Video]

Let us show you a video of IceSL which demonstrates how the CSG can be evaluated
in real-time, for rendering and interactive modeling purposes, using a different
approach.



Comparison

* CSG + slicing
— 0.25mm height, 25% infill, no shell

lceSL OpenSCAD + Kisslicer

CSG: 16 minutes

CSG+slicer: 31 d
slicer seconds Slicer: 10 seconds

IceSL does not need to create a mesh for printing, and directly visualizes the CSG tree
during interactive editing. As you see in the previous video, CSG can be performed in
real-time for rendering. The current slide gives some figures about slicing
performance.

12



Same result!

* Compute CSG before slicing

* Compute CSG gfter slicing

Lefebvre & Claux, 2015

Let’s take a look at what makes this possible.

Slicing the result of the CSG model, or evaluating the CSG after generating object
slices produces the same result.

13



Direct CSG slicing

* Perform CSG in the slices

— Instead of entire model [RepRap Host]

Since slices are composed of 2D primtives, the CSG is considerably simpler to do
within a slice with 2D primitives, than with full 3D meshes.

14



Main approaches for slicing

* Vector based:
— Intersect slice plane — mesh: 2D polygon outline
— Offset 2D polyline A

— Ex: Makerbot Slicer / <

/

.
\
* Raster based: N

— Render mesh onto slice plane as an image

[Frog (owenscenic) / CC BY-NC-SA 3.0]

— Extract contours
— Ex: RepRap Host

— Direct slicing from raster
[Zeng et al. 2011]

ebvre & C

Generating object slices can be done in two ways.

One way is to generate vector geometry from the intersection between planes and
the object and then to create offsetted polylines for contours from this geometry

Another way is to somehow render objects « onto slice planes » and then extract the

rasterized slices contours. We'll see later how we can do that.

Attribution:
http://www.thingiverse.com/thing:3284
http://www.thingiverse.com/owenscenic/about
http://creativecommons.org/licenses/by-nc-sa/3.0/
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Raster-based

Slice = image

White pixel = inside ; black = outside

Problem: Raster is heavy
Millions of pixels per slice

Slice #95

One thing to keep in mind when we do this is that each slice requires a lot of
memory, as the raster will typically be the size of the object, and have the resolution
of the printer. That’s a lot of pixels.



GPU

* Graphics processors are perfect for this
— Designed for parallel processing of pixels

White pixel = inside ; black = outside

Lefebvre & Claux|

GPUs are ideal for this purpose, because they are primarily meant to produce raster
images from 3D objects.

17



lceSL

* Raster representation
— Only at slicing time
— At printing resolution

— Transient, disposable. Used as input for tool path
generation.

* Geometry always under its original form
— No meshes !

When you talk raster-bases slicing, a raster representation is only generated at slicing
time, for each slice, at printing resolution. The generated rasters are temporary data
generated using the original model, prior to the tool path generation phase,
producing the final G-Code file.

Geometry never leaves its original form.

Let’s look at how raster slices are generated with the GPU.



Raster representation

* A-buffer [Carpenter 1984]
— Sorted list of in/out events per pixel

Y " Z
i :
e

< > f\ \

h /
“\ /S

W

We first create an orthogonal transformation and set up rasterization to work in a
bottom-up or top-down fashion (Z axis)

We render all the primitives into an A-Buffer, which records all rasterized fragments
in depth order for each pixel

19



Slice extraction

 —

&q} 0%

I

To extract a slice at a given Z coordinate, we evaluate the CSG at a any given X,Y

coordinate on this slice. We get the raster slice that way.

20



A-buffer

* Fast construction techniques
— Per-pixel Linked Lists [Crassin 2010]
— HA-buffer [Lefebvre et al. 2013]

Single pass, integrated within OpenGL (simple)

The construction of the A-Buffer can be fully integrated into the pipeline of the
graphics API (eg. OpenGL or DirectX).
We have methods to do lock-free sorted insertions for the fragments.

21



Algorithm for slicing

 Setup view from bed
e Build A-buffer
* For each slice

LT PTPT P PrireTdy

— Extract image
— Build tool path (see paper)

Slicing is just a matter of building an A-Buffer once for all, and then to extract slices at
various levels out of this A-Buffer. The actual tools paths can then be generated for
each raster image.

22



Algorithm for rendering

. Y& — />~ z
* Setup view from eye = 7 '\f :
* Build A-buffer < [ ™ >
. || ‘Fg_*—g—ﬁ—>
* For each pixel 0 ¥ >
— Find first intersection ] ~o—

Same algorithm for slicing and rendering

For interactive rendering, an A-Buffer is generated for each view. The CSG is
evaluated in a front-to-back fashion and stops at the frontmost visible fragment at
each pixel location, which is then shaded and rendered.

23



Other benefits

* Analytical primitives

— If you can draw it, we can slice it

Proxy (triangles)

Ray

Pixel
]

N

Analytical intersection
with sphere

Any kind of solid primitive becomes printable using this method, as long as we have

rasterization code for it. Analytical primitives can be raytraced through some proxy
geometry like a convex hull or just a quad primitive.

24



Other benefits

* Mixing primitive types is easy and reliable

* Mandelbulb-cup =
STL cup holder + (Mandelbulb implicit — sphere)

-

,f‘" /\ 3
poe_ - N (4\
W )
& i &
s N o

L\‘:y‘\ 2]/\
-

PN

Mixing primitive types is straightforward and CSG can work seamlessly with them.
Here is an example of a complex cup generated with a mesh and an implicit primitive.




Other benefits

* Image-based path extraction
— Morphological erosion

There are other benefits in using raster images for slices.
Image-based morphological erosion algorithms can be used to calculate tool paths.

26



Modeling with the dexels

* Example: morphological operations

* Applications for 3D printing include:
— Molds and hollowing
— Removing small features

It is possible to leverage the A-Buffer/dexel representation to perform interesting
modeling operations, especially those of interest in the context of fabrication, for
instance creating molds or hollows or removing small undesired features.

27



Example: hollowing

* Hollowing uses CSG with a self eroded model

[Pet monster Valentine (andreas) / CC BY-NC-SA 3.0]

Dragon ) eroded Dragon = hollowed Dragon
(cross-section)

* Hollowed model faster and cheaper to print
* Molds use a dilated model

Let’s take an example with a hollowed model as it’s a good way to save on material
expenditures and print time.
Hollows can be made by subtracting an eroded model from the original model.

Attribution:
http://www.thingiverse.com/thing:17204
http://www.thingiverse.com/andreas/about
http://creativecommons.org/licenses/by-nc-sa/3.0/



Morphological operations

e dilation® = Minkowski sum of model with a

| yXly,

* Erosion© = complement of Minkowski sum of
complement model with a ball

A dilation between two solids is the Minkowski sum between these solids. Take all
the balls at every possible surface position over the blue solid, and union them
together into the blue solid. You get a dilation.

An erosion is just a matter of using complements for the input and output.
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Morphological operations

» Approximated erosion/dilation =
use approximated ball

* Approximation OK for hollowing or removing
small features, as long as the offset is small

* Use zonotope as approximating solid
[Martinez et al. 2015]

@00 O

It is possible to use an approximation of a ball instead of a real ball to approximate
the dilation or erosion. It’s no big deal for hollowing.

A special type of solid, a zonotope, is ideal for this approximation.
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Morphological operations in IceSL

» Zonotope = Minkowski sum of line segments

_ ‘@_

» Offsetting with zonotope = successive
offsetting with these line segments

OT-O+—0—0

Zonotopes are themselves Minkowski sums of line segments.
Successively offsetting a solid with a zonotope’s line segments gives the Minkowski
sum between this solid and the zonotope.
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Dexel based offsetting

Input model Dexelization Dilation Dexel-to-solid

Ay 10l

Step 1

=

Step 2

Ready to print

Lefebvre & Claux, 2015

Offsetting becomes just a matter of, for each zonotope line segment,

1) Generating a dexel structure using the direction of the line segment
2) Dilating or eroding the dexels (see next slide)

3) Transforming the resulting dexels back into a solid representation
4) do this for every line segment
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Dexel-based offsetting

O —0 O O o——0
Dilation
o———0 o—o0 o———0
o o) o O
Erosion ==
e —) OO O ———C)
Oo—0 Oo—0

Dilation or erosion is straightforward and efficiently done on GPUs between the

dexels
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Dexel-to-solid

* Dexel-to-solid conversion uses hierarchy of
parallelepipeds to reduce fragment count

- - _ -

LU
i

Lefebvre & Claux, 2015

When transforming offsetted dexels back into a solid, inbetween segment offsetting
steps, we avoid generating too many fragments by using a hierarchical extraction
method. This alleviates GPU memory occupation and improves performance.
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Dexel-to-solid

N

Model: Stanford University Computer Graphics Laboratory

Lefebvre & Claux, 2015

We can see here the various boxes extraction, at all resolutions.



More morpho modeling

M\ (Me ZeZi)e s

Model: Stanford University Computer Graphics Laboratory

Lefebvre & Claux, 2015

Morphological operations can also be used for other purposes. Here they’re used to
detect small features and highlight them.
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=l he cylinder(1,10)
i (cube (2( 10
=] difference (cylinder(5,10),hole)

emit(b/1)
emit(r/0)

|

Lefebvre & Claux, 2015

We've seen how perimeters, shells and infills work previously. These printing
parameters are defined through objects called ‘brushes’ in IceSL. Brushes are useful
when it comes to controlling material density. For example, one can define a brush
with high infill percentage for object parts known to undergo high mechanical stress
once printed and used. This is the case with the inner cylindrical part of this object,
which uses brush #0. Remaining parts use brush #1, with lower infill percentage. The
lowest brush number takes precedence when overlaps occur.
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Test it!

* |ceSL is available there:

— http://webloria.loria.fr/~slefebvr/icesl

* Requirements:
— OpenGL 4.2 support

* Comments and suggestions welcome

— https://groups.google.com/forum/#!forum/icesl

IceSL has many features, and is available for free! We provide a Windows version
with an installer. Contact us for a Linux version. We are also open to extending the
scripting language to help teams doing research on slicing.
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SLICE AND MESH REPAIR

Modeling for Filament-Based 3D Printing
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GEOMETRIC
REQUIREMENTS

- Slice geometry to generate contours for
toolpath generation

« Manifold and watertight geometry
required to disambiguate inside/outside

Dinh & Gelman, 2015

Slice geometry to get outlines which determine our shells, infill, etc.

In order to disambiguate for a slice what’s inside and outside, the 3D geometry has to
be manifold and watertight. And of course, manifold means .... There are no dangling
geometry or overlapping geometry that would make it unclear what is considered
inside the object and what’s outside.
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© TYPICAL MESH
PROBLEMS

« Non-manifold
 Not watertight
» Inconsistent orientation

- Self-intersecting meshes

Dinh & Gelman, 2015
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PROBLEM MESHES

Users often create complex geometry by
overlaying meshes without properly merging them

W W
|
2
|

Rl

[The Salt Lake City Temple (Mormon)
(kafarn) / CC BY-SA 3.0

Dinh & Gelman, 2015

Here are just some examples of problematic meshes.

Many self-intersections — it is very typical of consumers to create geometry by
overlaying primitive shapes. They only care about the outer surface.

We are able to slice this type of geometry by union-ing in 2D all intersecting
contours.

Attribution:
http://www.thingiverse.com/thing:805594
http://www.thingiverse.com/kafarn
http://creativecommons.org/licenses/by-sa/3.0/
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PROBLEM MESHES

Non-manifold vertices
highlighted in red

[Seej penny ballista remix (Joeoreo) / CC BY-SA 3.0

Isolated triangles inside of objects
make the interior ambiguous

Dinh & Gelman, 2015

Left: Vertex non-manifolds are highlighted, mostly from boundary and overlapping

triangles.

Right: Cut-out of mesh with interior, isolated triangles

Attribution:
http://www.thingiverse.com/thing:123425

http://www.thingiverse.com/Joeoreo/about

http://creativecommons.org/licenses/by/3.0/
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SLICE-BASED REPAIR

- Make surface orientation consistent for
manifold meshes

« Union all intersecting parts
+ Self-intersecting
 User-specified intersections via plating

« Apply printer constraints
+ Watertight with respect to build plate
« Larger than print volume
« Wall thickness given filament width

Dinh & Gelman, 2015

We do minimal mesh repair in that we simply make the surface orientation
consistent. We leave the non-manifolds and keep track of them during slicing.

We union all intersecting parts using a particular fill rule.
References:
For a complete review of mesh problems and 3D repair strategies, see:

"A Practical Guide to Polygon Mesh Repairing" held at Eurographics 2012
http://www.meshrepair.org/eg2012_meshrepair_slides.pdf
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LARGE VOLUMES AND DETAILED
OBJECTS

Modeling for Filament-Based 3D Printing
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Lefebvre & Claux, 2015

Slice shaders

int material(vec3 plint groups)

{

if (groups>0){
int g = int(p.z*6.0+1.2*sin(p.y*5.0)+0.7*cos(p.x*3.0))
it((g%2)==0){
return O;
}else {
return 1;
}
}
return -1;

}

Procedural Texture [Perlin 1985]

[yet another vase (joo) / CC BY-SA 3.0

Print and picture by S. Lefebvre

Cost = code only
applied to slice (implicit)

We present now slice and warp shaders.

In computer graphics, it is sometimes desirable to define the exact appearance and
shape of a surface using shaders instead of using explicit geometry. The same is true
in the context of 3D printing where the concept of shaders can be applied solids.

Slice shaders can be used to procedurally select the printing material within a slice, in
the context of multi-material printing. The print head position ‘p’ is here passed to
the ‘material’ function which returns the material number to use at that specific
position, or -1 if no material should be deposited at all.

Tool path generation will take the output of the slice shader for each slice.

Attribution:
http://www.thingiverse.com/thing:16378
http://www.thingiverse.com/joo/about
http://creativecommons.org/licenses/by-sa/3.0/



Lefebvre & Claux, 2015

Warp shaders

vec2 warp(vec3 p
{

vec2 d =0.2 * vec2( 0.0, cos((p.z-0.5)*2.0)
+ 0.5 * cos((p.x-0.5)*2.0) );
return p.xy +d;

}

Warp shaders are available to procedurally alter slice geometry.
Slice and warp shaders can be combined as is the case on this slide. A warp shader is
used to twist the solid, and a slice shader is used to hollow cubical parts out of it.

As you can see we leverage GLSL all the way down, for both the rasterization and
printing pipeline.



MESH > MAIN MEMORY

« High-resolution
models (e.g., scan data)

» Qut-of-core mesh
processing & slicing

« Out-of-core file
management

Dinh & Gelman, 2015

How do we handle large models that don’t fit into main memory —e.g., 28 million
polygons on Lucy model?

Use out-of-core slicing.
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MESH > MAIN MEMORY

« Out-of-core processing required:
+ Model loading and slicing
« Simplification (for display)
+ Analysis and repair
+ Union-ing contours

« Approaches

“Out-of-Core Compression for Gigantic Polygon Meshes”, Isenburg,
M. and S. Gumbhold, Proceedings of SIGGRAPH 2003

“Out-of-Core Construction and Visualization of Multiresolution
Surfaces”, Lindstrom, P., Proceedings of SIGGRAPH 2003

“Manifold-guaranteed out-of-core simplification of large meshes with
controlled topological type”, Liu et al., The Visual Computer, 2003

Dinh & Gelman, 2015

So we’ve solved the problem of having a dense toolpath that doesn’t fit into main
memory.

What about large models that don’t fit into main memory — e.g., 28 million polygons
on Lucy model?

Use out-of-core slicing.
References:
http://www.cs.unc.edu/~isenburg/oocc/

https://computing.linl.gov/vis/images/pdf/I3D03_Lindstrom.pdf
http://link.springer.com/article/10.1007%2Fs00371-003-0222-2

86



© Z18: TOOL PATH >
MAIN MEMORY

- Example: slice a cube at full build volume, 100
microns, standard 10% infill

+ Solution: stream data through stages
« Memory usage reduced from 6 GB to 300 MB

« Software architecture considerations:
- Easy to create new stages and define dependencies
+ Most inter-stage dependencies known at compile time
« Dynamically link stages based on print properties

Dinh & Gelman, 2015

So we have a solution for meshes that don’t fit into main memory. What about the
problem of having a dense toolpath that doesn’t fit into main memory. This is the
case we encountered when generating a toolpath for the full Z18 build volume.

Example: tool path we get is very dense.

Solution: Stream the data through stages. The amount of data in memory at any time
is dynamically sized based on a window of data. We can restrict the size of the
window so that it fits within main memory.

Most stage inter-dependencies are known at compile time, so that we get static
connections, and and the compiler can optimize the code.

So what does this architecture look like?

Reference:

Similar streaming architecture for Polyjet-style printers (Objet Connex 500)
“OpenFab: A Programmable Pipeline for Multi-Material Fabrication”, Vidimce et al.,
SIGGRAPH 2013

The stages and data stream in OpenFab are quite different, however.
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1)

2)

3)

© STREAMING
ARCHITECTURE

LI

Solid Sparse Bridges Supports

Contours

Region Generators Path Planner
g Print Command

Shells Interiors Floors Roofs Supports Generator

Region Fillers Toolpath

Dinh & Gelman, 2015

Slicer - First stage is the actual slicing of the 3D geometry to obtain 2D outlines of
the object being printed.

Region Generators — Next the outlines go through a series of region generators.
These generators construct regions such as where the interiors are where we’'ll
print infill, solid floors, solid roofs and where supports will need to be printed. In
order to determine where supports are needed, the model is essentially sliced
from top down. For example, outlines from above that are larger than outllines
below means that supports will be needed in the top layer that is exposed.

Filler - Once the regions have been determined, the filler stage then fills out these
regions with solid or sparse infill, with bridge fill, or with supports. At this time
extrusion guards are also added, and rafts generated under the object and
supported areas. At the end of this stage, we now have specified all tool paths to
be printed, but they are not strictly ordered — the only real ordering we have right
now is the bottom up, layer to layer, ordering. But within a layer, all the paths are
unordered.
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© STREAMING
ARCHITECTURE

LI

Solid Sparse Bridges Supports‘

Contours
y

Region Generators Path Planner
g Print Command

Shells Interiors Floors Roofs Supports

Generator

Region Fillers Toolpath

Dinh & Gelman, 2015

4) Path Planner — All these unordered paths are then processed by Path Planner
which generates a toolpath according to a set of strict rules, plus some heuristics:

Shells are printed before infill.
Adjacent shells are printed innermost to outermost
Start at point closest to last when going form layer to layer

Avoid crossing over exterior parts of the print (e.g., roofs and exposed areas)

5) Command Generator — coming out of Path Planner the toolpath is just a list of
coordinates telling us where to extrude. The Command Generator then adds
speed, temperature, and fan adjustments, and then outputs these commands
into a toolpath file (like gcode, or in our case a json toolpath).
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OPEN CHALLENGES / Q&A

11:45am — noon
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