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Abstract

We describe a Fourier Volume Rendering (FVR) algorithm for datasets that are irregu-
larly sampled and require anisotropic (e.g., elliptical) kernels for reconstruction. We sample
the continuous frequency spectrum of such datasets by computing the continuous Fourier
transform of the spatial interpolation kernel which is a radially symmetric basis function
(RBF) that may be anisotropically scaled. While in the frequency domain, we can apply
low, band, and high-pass filters and arbitrary magnification and minification of the dataset
before performing an inverse 2D Fourier transform to obtain the X-ray projection. Our al-
gorithm is particularly amenable to implementation on commodity programmable graphics
boards, and can interactively render X-rays for datasets on the order of tens of thousands of
points. We describe the theoretical considerations to properly sample the frequency spec-
trum of anisotropic RBFs to avoid aliasing in the resulting X-ray and present a practical
method for datasets with high sampling requirements. A significant benefit of our algo-
rithm is that it can be applied to anisotropic RBFs that have been fitted to data through
optimization techniques, allowing the incorporation of advanced data-sensitive constraints,
such as smoothness, sharpness, and feature preservation.

Key words: Fourier volume rendering, frequency domain resampling, radial basis
functions, X-ray imaging
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1 Introduction

Fourier Volume Rendering (FVR) generates projection images (X-rays) of a 3D
volume of N3 size in O(N2logN) time rather than the O(N3) complexity of typical
volume rendering [8,12,14]. X-rays are practical for displaying volumes because
all internal structures are shown in one visualization. X-rays often provide a useful
first look at the data, particularly when no true surface exists, and doctors still rely
extensively on this type of visualization.

FVR requires a one-time pre-processing step to transform the 3D data into the
frequency domain via a discrete Fast Fourier Transform (FFT) (an O(N3logN) op-
eration). Conventional FFT requires that the data be uniformly (regularly) sampled.
The Non-uniform Discrete Fourier Transform (NDFT) overcomes this limitation,
although with limits on the degree of irregularity [15]. Using any discrete form
of the Fourier Transform leads to a discrete frequency spectrum that must then be
resampled via interpolation to generate arbitrary views in FVR [14]. The interpola-
tion kernel must be carefully designed to avoid aliasing, and the spatial data must
be pre-multiplied prior to applying the Discrete Fourier Transform (DFT) to avoid
attenuation in the resulting X-ray images.

Our contribution is an algorithm that directly samples at arbitrary resolution the
continuous frequency spectrum of irregularly sampled datasets. Instead of using
the discrete Fourier transform, we sample the continuous Fourier transform of the
spatial interpolation kernel – a radial basis function (RBF) which may be anisotrop-
ically scaled and located at irregular spatial intervals. Note that we do not resam-
ple the data in the spatial domain to obtain a regular volume that is then brought
to the frequency domain via the FFT. With a continuous frequency spectrum, our
FVR algorithm does not need to interpolate discrete frequency samples or deal with
aliasing in the frequency domain. However, we will need to sample the frequency
spectrum with sufficient resolution to avoid aliasing in the resulting X-ray (spatial
domain). We call this approach continuous Fourier Volume Rendering.

While in the frequency domain, we can apply conventional signal processing filters,
such as low, band, and high-pass filters. Arbitrary magnification and minification
are possible by, respectively, increasing the frequency samples or by zero-padding.
We can also use this algorithm to generate a regular, albeit dense, sampling of
the irregular dataset by performing an inverse 3D DFT. Finally, our algorithm is
particularly amenable to implementation on the Graphics Processing Unit (GPU) of
commodity programmable graphics boards and can be used to interactively render
X-rays for datasets on the order of tens of thousands of points.

Our method generalizes [5] where the authors sample the continuous frequency
spectrum of isotropic RBFs to visualize meshless simulations using collocation
and particle hydrodynamics. They do not address anisotropic RBFs and the issues
therein such as frequency sampling requirements. In this paper, we describe the the-
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oretical considerations in properly sampling the frequency spectrum of anisotropic
RBFs to avoid aliasing, present a practical method for challenging datasets with
high sampling requirements, and describe an optimal GPU algorithm for FVR of
irregularly sampled datasets using anisotropic RBFs.

In Section 2, we review Fourier Volume Rendering and radial basis functions for
spatial data interpolation, describe continuous FVR for irregularly sampled data in
Section 3, and present examples and results in Section 4.

2 Previous Work

Because our work extends conventional FVR to irregularly sampled data, we review
FVR in detail. We also discuss the particular RBFs used in our paper and place our
contributions in the context of prevous work in frequency domain resampling.

2.1 Fourier Volume Rendering (FVR)

Fourier Volume Rendering was first presented separately by Dunne [8], Levoy [12],
and Malzbender [14]. FVR generates an X-ray projection (summed volume ren-
dering) of a 3D volume using the Fourier Projection-Slice Theorem. The theorem
states that a 2D slice passing through the origin of the 3D Fourier transform is the
2D Fourier transform of the projection of the 3D space in the direction orthogonal
to the slice. Using the notation presented in [14], we define an image plane whose
normal vector t together with u and v form an orthonormal basis in R

3. Given a
continuous 3D distribution f (x,y,z), the parallel projection p(u,v) of f onto the
image plane is:

p(u,v) =
∞∫

−∞

f (t,u,v)dt (1)

The Fourier Transform of f (x,y,z) is F(ωx,ωy,ωz) and the plane in frequency
space corresponding to the image plane is defined by orthonormal vectors, Wu =
(wux,wuy,wuz) and Wv = (wvx,wvy,wvz). Using the Fourier Projection-Slice The-
orem, p(u,v) is obtained via the inverse Fourier Transform of a spectrum slice,
P(ωu,ωv):

p(u,v) =
∞∫

−∞

∞∫

−∞

P(ωu,ωv)e j2π(uωu+vωv)dωu,dωv (2)

where,

P(ωu,ωv) = F(wuxωu +wvxωv,wuyωu +wvyωv,wuzωu +wvzωv) (3)

In conventional FVR, the 3D Fourier Transform of the volume is computed in a
pre-processing step via the discrete FFT. Interpolating a 2D slice and transforming
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it back to the spatial domain via an inverse 2D DFT is an O(N2logN) operation,
which is much more efficient than the O(N3) of volume rendering but requires
careful design of a frequency domain interpolation kernel to avoid aliasing and
attenuation in the spatial domain [14]. A GPU-enabled FVR algorithm has been
developed, but deals primarily with mapping the rendering stage (frequency slice
extraction and interpolation of frequency samples) on the GPU. Computing the
discrete 3D frequency spectrum remains a pre-processing step [24]. In our new
algorithm, we directly sample the continuous frequency spectrum of the data and
avoid the convolution and pre-multiplication of the data needed to appropriately
resample a slice of the discrete frequency spectrum. We will, however, need to
sample the frequency spectrum with sufficient resolution to avoid aliasing in the
spatial domain (resulting X-ray) and address these issues in Section 3.1.

2.2 Interpolation via Radial Basis Functions

A summation of weighted radial basis functions (RBFs) of the following form has
been used as a data interpolant in many domains:

f (�x) =
n

∑
i=1

wiφi(�x−�ci) (4)

In the above equation, φi are the interpolation kernels (typically, a truncated Gaus-
sian); ci are the data points (centers of the kernels); and wi are densities associated
with each data point. For volume rendering, Equation 4 is convolution, and the
centers and densities are obtained using kernel fitting algorithms such as [9]. RBFs
have also been used to encode scalar fields [10,25] and for reconstructing implicit
surfaces [4,7,16,19,20]. In this paper, we use the splatting kernel (φ(r) = 2−r2

) of-
ten found in volume rendering, though other RBFs may be applied to our algorithm.

2.3 Non-uniform DFT

The non-uniform discrete Fourier transform (NDFT) computes the discrete fre-
quency spectrum for non-uniformly sampled data. Methods to compute the NDFT
in 1D include the direct method, Horner’s and the Goertzel algorithm [15]. Unfor-
tunately, there are no similar extensions to 2D and beyond because even if the sam-
ple points are distinct, there is no guarantee that the NDFT matrix is not singular.
There are two special cases in which the 2D NDFT matrix can be guaranteed to be
non-singular. These are: (1) rectangular grids whose cell width or height may vary,
and (2) non-uniform sampling on parallel lines. [21] uses the NDFT to regrid origi-
nally irregular datasets into a regular domain and enable interactive exploration and
zooming-in of these datasets using FVR. His approach handles irregular sampling,
but not anisotropically scaled kernels. As a result, gaps are apparent in the resulting
X-ray. The novel RBF approach that we present handles the more general case of
irregularly sampled, anisotropically scaled data.

5



2.4 Frequency Domain Resampling

A number of publications highlight the benefits of frequency domain resampling.
In [13], Li et al. showed that even when a lower-quality filter is used (e.g., cubic or
linear) in the frequency domain, a significant performance advantage is achieved.
A similar result was arrived at in [1] where an algorithm based on Shear-Warp Fac-
torization [11,22] was used. Our new approach enables high resolution sampling
of the frequency domain because we compute the continuous frequency spectrum
of our data set using radial basis functions. Hence, we do not need to resample, or
interpolate, discrete frequency samples.

2.5 Computing the Frequency Spectrum of Isotropic RBFs

The continuous Fourier transform of a summation of weighted RBFs, as derived
in [3], is:

F(ω) =
N

∑
i=1

wie
− j2πω�ciΦi(|ω|) (5)

In the above equation, Φi(|ω|) is the Fourier transform of the RBF φi at each data
point; wi are the weights (or values) of the N scattered samples; and e− j2πω�ci is
due to applying the Fourier Shift Theorem to RBFs centered at �ci. A more gen-
eral formulation is derived in [15]. For regularly sampled datasets, φi is isotropic
and identical (homogeneous) for all data points, and hence the i subscript can be
dropped and Φ(|ω|) can be pulled outside of the summation:

F(ω) = Φ(|ω|)
N

∑
i=1

wie
− j2πω�ci (6)

In this case, Φ(|ω|) is a radially symmetric function and essentially behaves as a
low-pass filter. Corrigan and Wallin use this homogeneous isotropic FVR formula-
tion to visualize the results of meshless simulation using collocation and smoothed
particle hydrodynamics [5]. In our approach, we allow φi to be scaled uniquely and
anisotropically for each data point.

2.5.1 Spatial Interpolation Kernels for FVR

The RBF we use is the Gaussian kernel used in splatting (φ(r) = 2−r2
) whose

generalized Fourier Transform is:

1

ln
3
2 2

π
3
2 e−π2 r2

ln2 (7)

We note that other RBFs can be applied to the FVR algorithm presented here so
long as they do not approach infinity anywhere along their base of support. Figure 1
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are examples of using an isotropic kernel with continuous FVR on several regularly
sampled datasets. Note that the color in the X-ray renderings throughout the paper
are generated by applying a transfer function to the 2D X-ray images from FVR
not to the original volumetric dataset.

Fig. 1. Continuous FVR of data with uniform sampling using isotropic kernels (left to
right): fuel injection into a combustion chamber, spatial probability distribution of electrons
in a protein molecule, and rotational C-arm x-ray scan of a human foot.

3 Computing the Frequency Spectrum of Anisotropic RBFs

In the general formulation (Equation 5), the radial basis functions are not homo-
geneous. Each RBF is individually and non-uniformly scaled about its center, re-
sulting in an anisotropic RBF such that the direction and magnitude of anisotropy
can differ from one data point to the next. Elliptical RBFs are those that have been
scaled non-uniformly along 3 principle directions. Anisotropic scaling may be the
result of sampling data on curvilinear or non-uniform rectilinear grids (thus re-
quiring an anisotropic reconstruction kernel) or from kernel fitting optimization
techniques [7,9] that generate elliptical RBFs and allow the incorporation of more
advanced data-sensitive constraints, such as smoothness, sharpness, and feature
preservation. To compute the frequency spectrum for anisotropic RBFs, we ap-
ply the Fourier Scaling Theorem [2]. We note that although our sample datasets
are composed of elliptical RBFs, our method can be applied to RBFs that have
undergone arbitrary transformations.

We must address two key issues to achieve continuous FVR on the general anisotropic
formulation. The first is to define the sampling requirements in frequency space to
ensure that high frequency information is retained while preventing aliasing in the
spatial domain (resulting X-ray). The second is how to optimize sampling of the
frequency spectrum since Φi(|ω|) cannot be pulled out of the equation.

3.1 Sampling Density

Because we sample the continuous frequency spectrum, we avoid aliasing in fre-
quency space, but may encounter aliasing in the spatial domain. The inverse DFT
assumes periodicity of the spatial signal, and so, copies of the reconstructed signal
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smallest interval, t

period, T

Scattered Samples in Spatial Domain Sampling the Continuous Frequency Spectrum

0 Hz ω        = 1/tmax

max frequency

# samples, N = T/t

periodic spectrum

2π0
scale samples by π/ωmax

Fig. 2. Sampling density required in the frequency domain given spatial domain samples
spanning period T with t as the smallest interval between two samples. The maximum
frequency corresponds to the smallest spatial interval, ωmax = 1/t, and the number of fre-
quency samples N depends on the maximum number of spatial samples that can occur
within the period T given the smallest interval (N = T/t).

may overlap. Aliasing can be avoided if we sample the frequency spectrum densely
enough. Figure 2 relates the density of input spatial samples to the maximum fre-
quency and resolution required for sampling the frequency spectrum to completely
capture spatial variation and avoid aliasing. As we increase the number of samples,
the spatial period increases, reducing overlap between copies. For data sampled on
a regular grid, we can compute the number of frequency samples required based on
the dimensions of the dataset [14]. If the sampling is irregular, we can avoid alias-
ing by assuming regular sampling at the smallest spatial interval t and over-sample
to N = T/t. The smallest spatial interval also determines the maximum frequency:
ωmax = 1/t. We uniformly sample the frequency spectrum with N samples in the
range of frequences −ωmax < ω < ωmax. Because the IFT assumes a frequency
period of 0 to 2π , we must rescale our samples by π/ωmax.

3.2 Sampling Density for Anisotropic RBFs

For anisotropic RBFs, the required sampling density depends on RBF scaling.
When the scaling is less than 1 (compressed RBFs), the data points are, in effect,
brought closer together. The minimum spatial interval is further reduced, requiring
a denser sampling of the frequency spectrum: N = T/(s ∗ t) and ωmax = 1/(s ∗ t)
where s is the minimum RBF scaling. As a result, N and ωmax increase as s ap-
proaches 0. Most datasets do not exhibit excessive compression, and N and ωmax

do not become prohibitively large. We have one dataset that is an example of ex-
cessive compression and variation in sampling density – the Blunt Fin. To handle
this challenging dataset, we must partition the data as described next.

3.2.1 A Dataset With Excessive Compression and Variation in Sampling Density

The Blunt Fin (Figure 3) contains a small region of very dense samples surrounded
by sparser samples of elliptical RBFs. This leads to two problems: (1) as described
above, the dense sampling means a very small minimum spatial interval and a very
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high max frequency, and (2) the intensity of the resulting X-ray varies widely, caus-
ing the dense region to overwhelm the rest of the X-ray. As suggested in [17], the
solution to (2) is to normalize the X-ray by dividing it with another X-ray image
that is generated using a weight of 1.0 for all data points. Although this is effec-
tive in equalizing the X-ray intensities (see Figure 3a), oscillation or ringing due
to an insufficient number of frequency samples (problem 1) is amplified. When
we compute a square frequency image below the max frequency component, we
are essentially applying a box filter which is a sinc function in the spatial domain,
leading to ringing. We can apply a Hamming window in the frequency domain to
reduce ringing, but the result is data leakage beyond the original boundaries of the
dataset and loss of high frequency detail (Figure 3b). We can completely eliminate
leakage and oscillation by significantly low-pass filtering in the frequency domain,
but even more spatial features are lost in the process.

(a)

(c) (d)

(b)

Fig. 3. (a) X-ray of Blunt Fin with normalization; (b) with windowing; (c) partitioned into
two datasets, and (d) resulting X-ray of composited partitions with color transfer.

Because the problems are due to a wide variation in sampling density, we partition
the dataset into regions of more common density, and in doing so, retain high fre-
quency information. In Figure 3c, we separate the high density region from the rest
of the dataset. We then combine the two resulting X-rays into a single image since
X-ray imaging is additive (Figure 3d). The partitioned X-rays are free of ringing,
but data leakage is still apparent. Partitioning the dataset further reduces leakage
at the cost of maintaining and compositing X-ray partitions. The Blunt Fin is an
example of excessive variation in sampling density. All other irregularly sampled
datasets we have encountered do not require partitioning.
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3.3 Computing the Frequency Spectrum on the GPU

To compute the frequency spectrum, we compute only half the spectrum using
Equation 5, and compute the second half using conjugate symmetry. We avoid
evaluating the Fourier Transform of the RBF (Φ) for every frequency sample by
precomputing Φ and storing it in a look-up table. This freedom allows us to use ar-
bitrary precision when computing Φ and linearly interpolate between values in the
look-up table. In practice, we build a 1D look-up table with a resolution of 4096
samples and have found no visible difference from explicitly evaluating Φ for each
frequency sample. We compute a slice of the frequency spectrum by rendering a
quad to accumulate the shift factor e− j2πω�ci for each location ω in parallel. For
uniform isotropic RBFs, the texture storing Φ is simply multipled to the quad once
for the entire image. For elliptical RBFs, the texture is anisotropically scaled, multi-
plied, and accumulated on a per pixel basis. For a 3D frequency spectrum, N depth
slices are computed using the above method for 2D slices. In Figure 7, we compare
CPU versus GPU times for computing a 2D slice of the frequency spectrum.

Fig. 4. X-rays of the Combustion Engine generated by (left to right): computing the fre-
quency spectrum on the CPU, on the GPU, using interpolation on the GPU, and using
isotropic RBFs. Using homogeneous isotropic RBFs for all data points is the most effi-
cient, but sharp features are lost. Interpolation (3rd X-ray) is more efficient that computing
the spectrum on the GPU, but some blurring is apparent. The first two X-rays are virtually
identical, and computing the spectrum on the GPU is significantly faster than on the CPU.

Our initial GPU implementation described above rotates and anisotropically scales
RBFs in the fragment shader on a per pixel basis because the Fourier Transform of
anisotropic RBFs cannot be pulled out of the summation of Equation 5. As com-
monly known, the amount of computation in the fragment shader should be kept to
a minimum for faster runtimes. In an optimized algorithm, we rotate and anisotrop-
ically scale the texture coordinates used to texture map the RBF footprint in the
CPU. We then rely on the GPU’s linear interpolation of the texture coordinates to
sample the RBF footprint in the fragment shader. This optimization does indeed
reduce the computation time for the frequency spectrum. However, some blurring
is apparent in the resulting X-rays due to interpolation of the texture coordinates as
shown in Figure 4 (3rd X-ray). In Figure 8, we compare timing results for comput-
ing the frequency spectrum on the GPU for isotropic RBFs and anisotropic RBFs
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using both the original and optimized GPU algorithms.

4 Results

Continuous FVR can operate in two modes. In the first mode, we directly compute
a 2D slice of the frequency spectrum at arbitrary resolution. In the second mode, we
pre-compute a 3D frequency spectrum and interactively slice the volume to obtain
a 2D slice to which the inverse FT is applied. The latter mode is conventional FVR
as presented in [8,12,14] and requires sampling the 3D frequency only once. Doing
so constrains the resolution of the spectrum and X-ray, resulting in aliasing artifacts
or blurring when zoomed-in as shown in the left and center panels of Figure 5. By
directly computing a 2D slice of the frequency spectrum, we are able to generate
accurate high resolution X-rays during arbitrary zoom-in (right panel of Figure 5).

Fig. 5. Close-up of left portion of Blunt Fin: Zooming into a pre-computed 64×64 X-ray
image reveals aliasing artifacts (left). Zero-padding in frequency space reduces alias-
ing (center), but by directly computing the 2D frequency spectrum (right), our approach
achieves high resolution magnification without artifacts (sharp features are preserved).

We now present rendering and timing results on various anisotropic datasets and
show several applications including zooming (magnification) and frequency-sensitive
X-ray rendering. We show only timing results for directly computing 2D frequency
spectrums since 3D frequency spectrums are computed slice-by-slice using our
GPU algorithm for 2D slices. As previously noted, the color in the X-rays is gen-
erated by applying a transfer function to the resulting 2D X-ray images, not to the
original volumetric dataset. We briefly describe the irregularly sampled datasets.

4.1 Data Sets

We apply continuous Fourier Volume Rendering to three types of irregularly sam-
pled datasets that require anisotropically scaled kernels. The SPX (4,011 pts), Com-
bustion Engine (46,805 pts), and Blunt Fin (15,256 pts) datasets were generated by
fitting elliptical basis functions to a local Delauney triangulation of the dataset [9].
The computational fluid dynamics (CFD) data is a volume of particle concentra-
tions from the New York Harbor area acquired from the New York Harbor Observ-
ing and Prediction Systems (NYHOPS). The CFD data (3,652 pts) shown in Fig-
ure 6 is a close-up of the entrance to the New York harbor. The Ghiradelli Square
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dataset (2,762 pts) came from voxel coloring [6] and anisotropic RBF fitting based
on principle components analysis within a neighborhood of each data point [7].

Fig. 6. Continuous FVR of irregularly sampled datasets: Combustion Engine (top-left),
SPX (bottom-left), CFD particle concentrations (center), and Ghiradelli Square (right). In-
put data for CFD data and Ghiradelli Square are shown above their X-rays.

4.2 X-rays and Timing Results

Visually, our X-ray results are similar to splatting and more continuous than Non-
uniform DFT because it allows X-rays of arbitrary resolution to be generated.
NDFT does not handle anisotropic kernels, and sampling artifacts (smoothed over
gaps between data points) are apparent in the reconstruction results [21].
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Fig. 7. Left: CPU and GPU times for computing a 2D frequency spectrum of anisotropic
datasets. Right: Close-up of GPU times for all datasets.

An advantage of our algorithm is that it is highly amenable to computation on the
GPU (GPU times are orders of magnitude faster than CPU times). In Figure 7, we
compare the time to compute a 2D slice of the frequency spectrum on the CPU
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with the time to compute it on the GPU (a close-up of GPU times for the different
datasets are shown on the right). With an Nvidia GeForce 8800 GT and at an image
resolution of 256 × 256, we achieve 3.4 fps on the Blunt Fin dataset with 15,256
data points and 1.2 fps on the Combustion Engine dataset with 46,805. CPU times
are not under 1 second for any of the datasets at the same image resolution. The
plots also show the nearly linear relationship between rendering time and total im-
age size (in the plots, image size is indicated by the number of pixels along one
side of a square image, not the total 2D image size). As with all GPU algorithms,
ours will become more interactive with future generations of graphics cards.
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Fig. 8. GPU times as a function of number of data points (left) and image size (right) for
computing a 2D frequency spectrum using isotropic and anisotropic RBFs and an optimized
GPU algorithm (via interpolation of texture coordinates).

In Figure 8, we compare timing results recorded on the Nvidia GeForce 8800
GT for computing the frequency spectrum on the GPU for isotropic RBFs and
anisotropic RBFs using both the unoptimized (per fragment computation of anisotrop-
ically scaled texture coordinates) and optimized (interpolated texture coordinates)
GPU algorithms. Actual timing data for rending 512 × 512 images are recorded
in Table 1. As expected, computing the frequency spectrum using homogeneous,
isotropic RBFs is fastest because of the simplification provided by this less gen-
eral formulation, and the optimized GPU algorithm for anisotropic RBFs is faster
than the unoptimized algorithm. Interestingly, the difference in rendering time be-
tween the three GPU algorithms remains almost constant regardless of image size
or number of data points, particularly as we go beyond 10,000 data points and im-
ages greater than 256× 256 in size. This is in contrast to the plots of Figure 7 which
show that the reduction in rendering time achieved by the GPU over the CPU be-
comes more significant as image and data size grows. Hence, the more accurate,
per fragment, anisotropic scaling of texture coordinates is scalable and is not much
more expensive at large image and data sizes.

Although GPU-accelerated splatting remains faster than GPU-enabled continuous
FVR, there are two key benefits of continuous FVR over splatting: (1) signal pro-
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Dataset #points CPU GPU-Isotropic GPU GPU-optimized

Fuel 13,731 205 0.68 - -

Neghip 121,586 1,869 5.89 - -

Foot 4,854,701 23,641 234.66 - -

Ghiradelli Square 2,762 135 0.15 0.17 0.16

CFD 3,652 170 0.19 0.21 0.21

SPX 4,011 197 0.20 0.23 0.23

Blunt Fin 15,256 591 0.75 0.86 0.82

Combustion Engine 46,805 1,795 2.27 2.51 2.47
Table 1
Rendering times (seconds) for 512 × 512 images. The first 3 datasets are regularly sampled
and reconstructed using homogeneous, isotropic RBFs. In the last two columns, X-rays are
rendered on the GPU using anisotropic RBFs which vary in scale from point to point.

cessing operations such as filtering, minification, and magnification are simplified
because they can be applied in the frequency domain, and (2) continuous FVR pro-
vides greater flexibility with respect to the degree of anisotropy applied to RBFs.
In [18], a GPU algorithm was developed for image aligned splatting of elliptical
kernels which relies on transforming the general ellipsoid to a unit sphere. Our
approach can be applied to RBFs that have undergone arbitrary transformations
because the transformations are applied to texture coordinates used to sample the
texture storing the FT of the isotropic RBF (Φ). This transformation may be an
affine transformation represented by a 4 × 4 transformation matrix, or it can be
a non-linear transformation stored in a displacement texture. In addition to these
benefits, continuous FVR maintains high resolution at arbitrary zoom factors be-
cause the frequency spectrum can be explicitly sampled at any resolution, unlike
conventional FVR which requires re-computing the 3D frequency spectrum at the
desired resolution for high fidelity zoom-in.

Splatting exploits the locality of RBFs in the spatial domain, and hence, the com-
putation time depends significantly on the size of the ellipsoid. This dependence
is evident in the low framerates for datasets with highly stretched ellipsoids (Blunt
Fin and Combustion Engine) versus better framerates for larger but more regular
datasets [18]. In our approach, the frequency domain shift factor (e− j2πω�ci) re-
quired to sample the continuous frequency spectrum of shifted RBFs has infinite
support. Thus, the Fourier Transform of every RBF must be evaluated for each fre-
quency sample (leading to the slower performance when compared with splatting).
We found early discarding of fragments ineffective (few fragments were being dis-
carded), and the additional branching resulted in even longer compute times. As a
result, the degree of anisotropy of the dataset does not affect our runtime which is
linearly dependent on the size of the dataset and X-ray image that is generated.
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4.3 Filtering, Zooming, and Frequency-sensitive X-rays

Once we have a frequency spectrum of the dataset, we can apply basic signal pro-
cessing before restoring the data to the spatial domain via the inverse DFT. Typical
low, band, and high-pass operations are implemented via a multiplication of the fre-
quency spectrum with a box filter which retains the desired frequencies and zeros
out the remaining frequencies. Depending on the filtering or zooming operation,
this can be achieved on the graphics hardware by either scaling up or down the
texture coordinates of the spectral footprint of the RBFs (stored as a texture) or
the coordinates of the quadrilateral to which the texture is mapped. For low-pass
filtering, the high frequency information must be clamped to zero while still re-
taining the same frequency range. This translates to texture mapping only the low
frequency portion of the spectrum to the quadrilateral. For band or high-pass filter-
ing, the low frequencies are clamped to zero by multiplying an inverse Gaussian
to the frequency spectrum to avoid ringing which would occur if a black quad is
simply drawn over the low frequencies. Figure 9 shows low and high-pass filtering
of the Combustion Engine dataset.

For minification (zoom-out) and magnification (zoom-in), the range of the fre-
quency spectrum needs to be scaled. We achieve this by scaling the quadrilateral
to which the full spectral footprint of the RBFs are drawn (scale up for zooming-
out and scale down for zooming-in). When zooming-in, we can apply zero-padding
to the scaled-down spectrum to reduce aliasing or completely re-compute the 2D
spectrum to display high-resolution detail without artifacts as shown in the center
and right panels of Figure 5.

Fig. 9. Left to right: Low to high-pass filtering of the Combustion Engine. Far right: Color
is applied based on frequency band instead of opacity for a frequency-sensitive transfer
function.

With a frequency spectrum, we are able to generate frequency-sensitive X-rays by
applying a transfer function based on frequency bands rather than opacity values.
We do so by transforming each band back into the spatial domain via the inverse
DFT, applying a transfer function to the resulting filtered X-ray, and blending all
X-ray bands into a final image. An example is shown in Figure 9 (far right) where
high-frequency details (sharp features) are high-lighted.
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5 Conclusions and Future Work

We have described a continuous FVR algorithm for irregularly sampled datasets
that uses the continuous Fourier Transform of anisotropic RBFs to generate X-rays
of arbitrary resolution. With a continuous frequency spectrum, we are able to easily
filter, minify and magnify the dataset, and generate frequency-sensitive X-rays. We
note that although our sample datasets are composed of elliptical basis functions,
our method can be applied to RBFs that have undergone arbitrary transformations.

In future work, we will investigate how shading and depth cues can be incorporated
into continuous FVR. Such cues are already possible in discrete FVR [23]. The
Fourier Transform of the gradient magnitude of RBFs is quite complex, however,
and this is the primary obstacle. For example, the FT of the gradient magnitude
of Gaussians requires the Kummer function. Finally, the RBFs and their Fourier
Transforms are scalable to higher dimenions. We will explore how continuous FVR
can be applied to time-varying 3D data in future work.
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