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Abstract| We present a new method of surface recon-
struction that generates smooth and seamless models from
sparse, noisy, non-uniform, and low resolution range data.
Data acquisition techniques from computer vision, such as
stereo range images and space carving, produce 3D point
sets that are imprecise and non-uniform when compared to
laser or optical range scanners. Traditional reconstruction
algorithms designed for dense and precise data do not pro-
duce smooth reconstructions when applied to vision-based
data sets. Our method constructs a 3D implicit surface,
formulated as a sum of weighted radial basis functions. We
achieve three primary advantages over existing algorithms:
(1) the implicit functions we construct estimate the sur-
face well in regions where there is little data; (2) the recon-
structed surface is insensitive to noise in data acquisition
because we can allow the surface to approximate, rather
than exactly interpolate, the data; and (3) the reconstructed
surface is locally detailed, yet globally smooth, because we
use radial basis functions that achieve multiple orders of
smoothness.

Index terms: regularization, surface �tting, implicit func-
tions, noisy range data

I. Introduction

The computer vision community has developed numer-
ous methods of acquiring three dimensional data from im-

ages. Some of these techniques include shape from shading,

depth approximation from a pair of stereo images, and vol-

umetric reconstruction from images at multiple viewpoints.

The advantage of these techniques is that they use cam-
eras, which are inexpensive resources when compared to

laser and optical scanners. Because of the a�ordability of

cameras, these vision-based techniques have the potential

to enable the creation of digital models by home computer

users who may not have professional CAD training. On
the other hand, models in popular use in the entertain-

ment industry (animation and gaming applications), video

and image editing, and computer graphics research come

from dense laser scans or medical scans, not from vision-
based techniques. There are signi�cant di�erences in terms

of quality and accuracy between data sets obtained from

active scanning technology (e.g. optical, laser, and time-

of-ight range scanners) and passive scanning technology

(e.g. shape from shading, voxel coloring) that use only im-
ages and camera calibration to obtain 3D point sets. Many

of the well-known and often used reconstruction algorithms

were designed to generate surfaces from dense and precise

data such as those obtained from active scanners. These

methods are not robust to the challenges posed by data ob-
tained from passive scanning technology. The aim of our

method is to be able to reconstruct smooth and continuous

surfaces from the more challenging vision-based data sets.

The new approach presented in this paper constructs a

3D implicit function from vision-based range data. We use

an analytical implicit representation that can smoothly in-

terpolate the surface where there is little or no data, that

is compact when compared to discrete volumetric distance
functions, and that can either approximate or interpolate

the data. The resulting surfaces are inherently manifold,

smooth, and seamless. Implicit surfaces are well-suited for

operations such as collision detection, morphing, blend-

ing, and modeling with constructive solid geometry because
they are formulated as a single analytical function, as op-

posed to a piecewise representation such as a polygonal

model or a dense volumetric data set. Implicit surfaces

can also accurately model soft and organic objects and can

easily be converted to a polygonal model by iso-surface ex-
traction.

We construct an implicit surface using volumetric regu-
larization. This approach is based on the variational im-

plicit surfaces of Turk and O'Brien [48]. Our implicit func-

tion consists of a sum of weighted radial basis functions

that are placed at surface and exterior constraint points

de�ned by the data set. The weights of the basis functions
are determined by solving a linear system of equations. We

can approximate the data set by relaxing the linear system

through volumetric regularization. The ability to choose

whether to approximate or interpolate the data is espe-
cially advantageous in the presence of noise. Surface detail

and smoothness are obtained by using basis functions that

achieve multiple orders of smoothness.

Our main contributions are: (1) introducing the use of

variational implicit surfaces for surface reconstruction from

vision-based range data, (2) the application of a new radial

basis function that achieves multiple orders of smoothness,
(3) enhancement of �ne detail and sharp features that are

often smoothed-over by the variational implicit surfaces,

and (4) construction of approximating, rather than inter-

polating surfaces to overcome noisy data.

The remainder of the paper is organized as follows: in

Section II, we review related work in surface representation

and reconstruction. We give an overview of our approach in
III. In Section IV, we introduce volumetric regularization

and describe our approach to constructing approximating

surfaces using the variational implicit surface representa-

tion. In Section V, we introduce a radial basis function that

achieves multiple orders of smoothness. In Section VI, we
discuss sampling issues and the preservation of topology in
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our framework. Results from synthetic range images and
from real space carved data sets are shown in Section VII.

II. Related Work

Our approach to surface reconstruction can be compared

to previous works in the areas of shape representation, re-
construction, smoothing, and surface regularization. The

large number of published methods in these areas makes

it nearly impossible to perform a comprehensive survey.

Instead, we describe some of the more well-known ap-

proaches, with a bias towards those more closely related
to our own approach. Table I summarizes the comparison

between related reconstruction algorithms and our own.

A. Surface Representation

Three general classes of surface representations include
discrete, parametric, and implicit approaches. Discrete

forms, such as a collection of polygons and point samples,

are the most widely used representations. The primary dis-

advantages associated with them are that they are verbose,

that they can only approximate smooth surfaces, and that
they have �xed resolution. In contrast, parametric sur-

faces, such as B-splines and Bezier patches, may be sam-

pled at arbitrary resolution and can be used to represent

smooth surfaces. The main drawback of paramteric sur-

faces is that several parametric patches need to be com-
bined to form a closed surface, resulting in seams between

the patches. Implicit representations, on the other hand,

do not require seams to represent a closed surface. Implicit

representations come in both analytical and discrete sam-
pled forms. Analytical representations, such as our own,

are more compact than sampled representations. Exam-

ples of sampled implicit functions include gridded volumes

and octree representations such as those used by Szeliski

et al. [39], Frisken et al. [18], and Curless and Levoy [12].

B. Surface Reconstruction

In this section, we discuss the more popular reconstruc-

tion algorithms. The shape reconstruction methods we de-

scribe include range data merging and mesh reconstruction,
region growing, algorithms based on computational geom-

etry, and algebraic �tting.

Although our work does not focus on reconstructing

surfaces from dense and precise range data, methods
that merge multiple range images and reconstruct smooth

meshes address issues similar to our own. Issues that arise

in such work include merging multiple range images, clos-

ing of gaps in the reconstruction, and handling of outliers.

Curless and Levoy [12] and Hilton et al. [20] construct
signed distance functions from the range images and ob-

tain a manifold surface by iso-surface extraction. Soucy

and Laurendeau [37] and Turk and Levoy [47] merge tri-

angulations of the range points. Note that all of these

methods require range data using structured light that is
much more accurate than can be measured passively using

photographs alone.

Another approach is region growing, and examples in-
clude Hoppe's work on surface reconstruction [21] and Lee,

Tang and Medioni's work on tensor voting [26,40]. Hoppe
uses a plane is �tted to a neighborhood around each data

point, providing an estimate of the surface normal for the

point. The surface normals are propagated using a mini-

mal spanning tree, and then a signed distance function is
contructed in small neighborhoods around the data points.

Lee and Medioni's tensor voting method is similar in that

neighboring points are used to estimate the orientations of

data points. The tensor is the covariance matrix of the

normal vectors of a neighborhood of points. Each data
point votes for the orientation of other points in its neigh-

borhood using its tensor �eld. In [40], the surface is re-

constructed by growing planar, edge, and point features

until they encounter neighboring features. Both methods

described above are sensitive to noise in the data because
they rely on good estimates for the normal vector at each

data point.

Several algorithms based on computational geometry

construct a collection of simplexes that form the shape or
surface from a set of unorganized points. These methods

exactly interpolate the data | the vertices of the simplexes

consist of the given data points. A consequence of this is

that noise and aliasing in the data become embedded in the

reconstructed surface. Of such methods, three of the most
successful are Alpha Shapes [15], the Crust algorithm [1],

and the Ball- Pivoting algorithm [4]. In Alpha shapes, the

shape is carved out by removing simplexes of the Delaunay

triangulation of the point set. A simplex is removed if its

circumscribing sphere is larger than the alpha ball. In the
Crust algorithm, Delaunay triangulation is performed on

the original set of points along with Voronoi vertices that

approximate the medial axis of the shape. The resulting

triangulation distinguishes triangles that are part of the

object surface from those that are on the interior because
interior triangles have a Voronoi vertex as one of their ver-

tices. Both the Alpha Shapes and Crust algorithms need

no other information than the locations of the data points

and perform well on dense and precise data sets. The object

model that these approaches generate, however, consists of
simplexes that occur close to the surface. The collection of

simplexes is not a manifold surface, and extraction of such

a surface is a non-trivial post-processing task. The Ball-

Pivoting algorithm is a related method that avoids non-

manifold constructions by growing a mesh from an initial
seed triangle that is correctly oriented. Starting with the

seed triangle, a ball of speci�ed radius is pivoted across

edges of each triangle bounding the growing mesh. If the

pivoted ball hits vertices that are not yet part of the mesh,

a new triangle is instantiated and added to the growing
mesh. In Figure 1 (right panel), the Crust algorithm is

applied to real range data obtained from the generalized

voxel coloring method of [11]. Although the general shape

of the toy dinosaur is recognizable, the surface is rough due
to the noisy nature of the real range data.

Many algebraic methods avoid creating noisy surfaces

by �tting a smooth function to the data points, and by not

requiring that the function pass through all data points.
The reconstructed surface may consist of a single global
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TABLE I

Comparison of Related Works

Methods Shape Arbitrary Complex Robust Fills Gaps
Representation Topology Models to Noise

Distance Fields discrete yes yes no no

Region Growing piecewise continuous yes yes no no

Computational piecewise continuous yes yes no no
Geometry

Algebraic Methods analytical yes no yes yes

Deformable analytical no no yes yes
Superquadrics

Volumetric analytical yes yes yes yes
Regularization

function or many functions that are pieced together. Ex-

amples of reconstruction by global algebraic �tting are the
works of Taubin [41, 42], Gotsman and Keren [22, 23], and

Blane et al. [5]. Taubin �ts a polynomial implicit func-

tion to a point set by minimizing the distance between the

point set and the implicit surface. In [41], Taubin develops

a �rst order approximation of the Euclidean distance and
improves the approximation in [42]. Gotsman and Keren

create parameterized families of polynomials that satisfy

desirable properties, such as �tness to the data or conti-

nuity preservation. Such a family must be large so that it

can include as many functions as possible. This technique
leads to an over- representation of the subset, in that the

resulting polynomial will often have more coeÆcients for

which to solve than the simpler polynomials included in

the subset, thus requiring additional computation. Blane
et al. performs polynomial �tting of points on a zero level

set and (for stability) �ts points on two additional level sets

close to the zero level set | one internal and one external

level set. The primary limitation of global algebraic meth-

ods is their inability to reconstruct complex models. The
highest degree polynomials that have been demonstrated

are around degree 12, and this is far too small to represent

complex shapes.

In [3], Bajaj overcomes the complexity limitation by con-
structing piecewise polynomial patches (called A-patches)

that combine to form one surface. Bajaj uses Delaunay tri-

angulation to divide the point set into groups delineated by

tetrahedrons. An A-patch is formed by �tting a Bernstein

polynomial to the data points within each tetrahedron. By
constructing a piecewise surface, Bajaj's approach loses the

compact characteristic of a global representation, and oper-

ations such as collision detection, morphing, blending, and

modeling with constructive solid geometry become more

diÆcult to perform since the representation is no longer a
single analytical function.

Examples of algebraic methods developed earlier in the

vision community that provide both smooth global �tting
and accurate local re�nement include the works of Ter-

zopoulos and Metaxas on deformable superquadrics [46]

and Pentland and Sclaro� on generalized implicit func-

tions [32,34]. Both methods use superquadric ellipsoids

as the global shape and add local deformations to �t the
data points. Terzopoulos and Metaxas separate the re-

constructed model into global parameters de�ned by the

superquadric coeÆcients, and local displacements de�ned
as a linear combination of basis functions. The global and

local deformation parameters are solved using dynamics.

Pentland and Sclaro� de�ne a generalized implicit model

that consists of a superquadric ellipsoid and a modal de-

formation matrix. The modal deformation parameters are
found by iteratively �nding the minimum RMS error to the

data points. The residual error after the deformation pa-

rameters have been found are incorporated into a displace-

ment map to better �t the data. As with most algebraic

methods, the drawback of these techniques is their inability
to handle arbitrary topology.

Our approach is similar to global algebraic �tting in that

we construct one global implicit function, although our ba-

sis functions are not polynomials. Previous work that is

most closely related to our own are methods based on reg-

ularization which we describe next.

C. Surface Regularization

Surface reconstruction is an ill-posed inverse problem be-

cause there are in�nitely many surfaces which may pass
through a given set of points. Surface regularization re-

stricts the class of permissible surfaces to those which

minimize a given energy functional. Terzopoulos pio-

neered �nite-di�erencing techniques to compute approx-

imate derivatives used in minimizing the thin-plate en-
ergy functional of a height-�eld. He developed computa-

tional molecules from the discrete formulations of the par-

tial derivatives and uses a multi-resolution method to solve

for the surface. Boult and Kender compare classes of per-

missible functions and discuss the use of basis functions to
minimize the energy functional associated with each class.

Using synthetic data, they show examples of overshoot-

ing surfaces that are often encountered in surface regular-

ization. As exempli�ed by these two methods, many ap-

proaches based on surface regularization are restricted to
height �elds.

In [16], Fang and Gossard reconstruct piecewise continu-

ous parametric curves. The advantage of parametric curves

and surfaces over height-�elds is the ability to represent

closed curves and surfaces. Each curve in their piecewise re-

construction minimizes a combination of �rst, second, and
third order energies. Unlike previous examples, the deriva-
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tive of the curve in this method is evaluated with respect
to the parametric variable. Each curve is formulated as a

sum of weighted basis functions. Fang and Gossard show

examples using Hermite basis. The approach we present in

this paper has similar elements. We also use basis functions
to reconstruct a closed surface which minimizes a combi-

nation of �rst, second, and third order energies. We di�er

from the previous work in that we reconstruct complex

3D objects using a single implicit function; we perform

volumetric rather than surface regularization; and we use
energy-minimizing basis functions as primitives.

Because our method of reconstruction applies regular-

ization, comparisons can also be made to other classes of

stabilizers (or priors) and other energy-minimizing basis
functions. We postpone the discussion of other prior as-

sumptions and resulting basis functions to Section V where

we introduce the multi-order basis function that we use to

reconstruct implicit surfaces. The use of radial basis func-

tions for graphical modelling was introduced by Blinn[6].
Since then, methods have been published that use this

surface representation for surface reconstruction, includ-

ing Muraki[29] and Savchenko[33]. Our work di�ers from

these methods in that we use a basis function that min-

imizes multiple energies in 3D, including thin-plate and
membrane. Comparison with reconstructions using Gaus-

sian and thin-plate basis functions will be addressed in Sec-

tion V-A.

D. Surface Smoothing

A closely related topic is that of mesh smoothing, where

a low-pass �lter is applied to a mesh to reduce noise. Exam-

ples of this method include the works of Taubin et al. [43]

and Desbrun et al. [13]. The primary drawback of mesh

smoothing methods is that they require an initial mesh.
Our approach creates and smoothes a surface in one step.

Regularization and smoothing are closely tied. The re-

lationship between regularization and smoothing has been
studied by many, including Girosi et al. [19], Terzopou-

los [44], and Nielson et al [30]. In Section V-A, we use a

volumetric data set to demonstrate the similarity between

regularization and spatial smoothing. Our reconstruction

of the data set (which uses no information about the grid-
ded structure of the volume) comes very close to a model

obtained by spatially smoothing the 3D data set prior to

iso-surface extraction. The advantage of our reconstruction

algorithm is that it may be applied to data sets that are

unstructured and non-uniform. Spatial smoothing cannot
easily be applied to such data.

E. Active versus Passive Scanning Technology

Many of the methods described above reconstruct sur-

faces from dense and precise data obtained from active
scanning. In this paper, we address the problem of re-

constructing smooth and seamless surfaces using data ob-

tained from passive scanning. In passive scanning, only

images and camera calibration information are used to ob-

tain 3D point sets. Active scanning technology (e.g. light
stripe and time-of-ight range scanners) di�er from passive

Fig. 1. Left: Stanford Bunny data set from cyberware scanner.
Right: The toy dinosaur data set from voxel coloring. Both re-
constructions were generated using the Crust algorithm. The
dinosaur data set obtained from passive scanning is noisier and
lower in resolution.

scanning technology (e.g. shape from shading, voxel col-

oring) in terms of quality, accuracy, and cost. The typical

scanning resolution of cyberware scanners is 0.5 mm, while

that of the voxel coloring data sets we use as examples in
this paper are approximately 1.25 mm. Data from passive

scanning is comparatively more noisy, more non-uniform,

and more sparse than data from active scanners. In par-

ticular, surface reconstruction methods such as [12, 20, 47,

37] are not suited for creating models from data captured
using passive scanning techniques.

Figure 1 is a comparison between data sets obtained from

laser scanners and that obtained from voxel coloring. Both

data sets were reconstructed using the Crust algorithm of

Amenta et al. which exactly interpolates all data points.
The toy dinosaur data set obtained from voxel coloring

is signi�cantly lower in resolution and accuracy than the

Stanford Bunny obtained using a cyberware scanner. The

primary advantage of passive scanning methods is the low

cost of digital cameras (less than $1000) that are used to
capture the images. Camera calibration is obtained using a

calibration grid that is captured in the images. In contrast,

the current cost of active range scanners is from $10,000 to

over $100,000.

III. Overview of the Approach

Our approach to surface reconstruction is based on cre-

ating a single implicit function f(x) by summing together

a collection of weighted radial basis functions. We adopt

the convention that the implicit function is positive inside
the surface, zero on the surface, and negative outside the

surface. The nature of the radial basis functions that are

used is important to the quality of the reconstructions, and

we discuss the basis function selection in detail in Section

V. As input to implicit function creation, our method re-
quires a collection of constraint points ci that specify where

the function should take on particular values. Most of the

constraint points come directly from the input data, and

these are points where the implicit function should take

on the value zero. We call these 3D locations surface con-

straints. In addition, our method requires that some 3D
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points be explicitly identi�ed as being outside the surface,
and we call these exterior constraints. Scattered data ap-

proximation of the surface and exterior constraints is then

used to construct the implicit function. In Section IV-B

we describe the details of the implicit formulation, and in
Section VI we discuss the sampling of surface and exterior

constraints from the measured data of an object.

IV. Volumetric Regularization

The surface reconstruction technique that we present in

this paper is an extension of the variational implicit sur-
faces of [48]. This approach is based on the calculus of

variation and is similar to surface regularization in that it

minimizes an energy functional to obtain the desired sur-

face. Unlike surface regularization, however, the energy

functional is de�ned in R3 rather than R2. Hence, the func-
tional does not act on the space of surfaces, but rather, on

the space of 3D functions. We call this volumetric regu-

larization. We use volumetric regularization to obtain a

smooth 3D implicit function whose zero level set is our re-

constructed surface. By Sard's theorem [8, 17], the set of
nonregular values of such a smooth implicit function is a

null set. Hence, the surface described by the zero level

set of our implicit function does not contain pathological,

or non-di�erentiable, points. In this section, we describe

how we construct an approximating surface and obtain the
implicit function representing the surface using volumetric

regularization.

A. Approximation vs. Interpolation

Scattered data interpolation is the process of estimat-

ing previously unknown data values using neighboring data
values that are known. In the case of surface reconstruc-

tion, the surface passes exactly through the known data

points and is interpolated between the data points. Data

interpolation is appropriate when the data values are pre-

cise. In vision-based data, however, there is some uncer-
tainty in the validity of the data points. Using data in-

terpolation to construct the surface is no longer ideal be-

cause the surface may not actually pass exactly through the

given data points. This is precisely the problem with algo-

rithms from computational geometry that generate polyg-
onal meshes using data points as the vertices of the mesh.

If the uncertainty of the data points is known, a surface

that better represents the data would pass close to the

data points rather than through them. Constructing such

a surface is known as data approximation. Many vision-
based techniques for capturing 3D surface points have an

associated error distribution for the data points. In this

section, we discuss how data approximation is achieved in

our framework using volumetric regularization.

In regularization, the unknown function is found by min-

imizing a cost functional, H , of the following form:

H [f ] = �[f ] +
1

�

nX
i=1

(yi � f(xi))
2 (1)

In the above equation, f is the unknown implicit surface

λ=2.0λ=0.0 λ=0.001 λ=0.03

Fig. 2. Reconstruction of a synthetic range image of a cube corner
using various values of �.

function; �[f ] is the smoothness functional, such as thin-

plate; n is the number of constraints, or observed data

points; yi are the observed values of the data points at
locations xi; and � is a parameter (often called the regu-

larization parameter) to weigh between �tness to the data

points and smoothness of the surface. We can allow the

surface to pass close to, but not necessarily through, the

known data points by setting � > 0. When � = 0, the
function interpolates the data points. The � values may be

assigned according to the noise distribution of the data ac-

quisition technique. Figure 2 shows the results of applying

di�erent � values on the same data set. As � approaches

zero, the surface becomes rougher because it is constrained
to pass closer to the data points. At � = 0, the surface in-

terpolates the data, and overshoots are much more evident.

At larger values of �, the reconstructed model is smoother

and approaches an amorphous bubble.

B. A Solution to the Regularizing Cost Functional

Derivations presented in [19, 49] show that the cost

functional given in Equation 1 is minimized by a sum of

weighted radial basis functions as shown below:

f(x) = P (x) +

nX
i=1

wi�(jx � cij) (2)

In the above equation, f(x) is an implicit function that

evaluates to zero on the surface, negatively outside, and

positively inside; � is the radially symmetric basis function;

n is the number of basis; ci are the locations of the centers
of the basis; and wi are the weights for the basis. In [48],

Turk and O'Brien center a basis function at each constraint

point. We do the same in this work. The constraints may

be points on the surface of the object to be reconstructed or
points external to the object. The polynomial term, P (x),

spans the null space of the basis function. For thin-plate

energy, the polynomial term consists of linear and constant

terms because thin-plate energy consists of second order

derivatives. In 3D where x = (x; y; z), the polynomial term
for thin-plate is P (x) = p0 + p1x+ p2y + p3z. The unique

implicit function is found by solving for the weights, wi, of

the radial basis functions and for the coeÆcients, p0, p1, p2,

and p3, of P (x). The unknowns are solved by constructing

the following linear system, formed by applying Equation
2 to each constraint, ci.
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In the above equation, p0 and p = (p1; p2; p3) are co-

eÆcients of P (x). The function value, f(ci), at each

constraint point is known since we have de�ned the con-
straint points to be on the surface or external to the object.

f(ci) = 0 for all ci on the surface. All exterior constraints

are placed at the same distance away from the surface con-

straints and are assigned a function value of -1.0 (more

details will be given in Section VI-A on selection of exte-
rior constraints). Notice that in the above system matrix,

� appears on the diagonal. By increasing the value of �,

the system matrix becomes better conditioned because it

becomes more diagonally dominant. The addition of � does
not invalidate Equation 2 because �

Pn

i=1
wi = 0 (as seen

in row n+1 of the matrix). The use of � for trading o� in-

terpolation and approximation is found in numerous other

publications, including those of Girosi et al. [19], Yuille et

al. [51], and Wahba [49] where a detailed derivation can be
found.

It is possible to assign distinct � values to individual con-
straints. In this case,

Pn

i=1
�iwi 6= 0, but instead, becomes

part of the constant in the null space term, P (x). This

exibility is especially important when we use exterior con-

straints because they are added only to provide orientation

to the surface but do not represent real data. In practice,
we have found that � works well as a semi-global regular-

izing parameter, where one � value is used for all surface

constraints, and another for all exterior constraints. Using

one � value for all surface constraints is appropriate when
the spatial distribution of noise is isotropic. This is a rea-

sonable model for many vision-based data sets including

the voxel-coloring data set that we later use as examples.

With other noise models, it may be more appropriate to

use � as a local �tting parameter by assigning a � value for
each surface constraint based on the con�dence measure-

ment of the point. A large � value such as 2.0 is often used

for exterior constraints, while small values such as 0.001

is often used for surface constraints. This choice of � for

surface constraints was found through measures of �tness
and curvature applied to the voxel coloring data set of a

toy dinosaur. We found that a practical upper bound for

� for surface constraints from these types of data sets is

0.003. A detailed description of the �tness measures and

results for various values of � can be found in our technical
report [14].

The implicit formulation described by Equation 2 has

been used in a number of previous work, including those

[6, 9, 28, 29, 31, 33, 48, 50, 51]. In [6, 29, 51], the basis

function, �, was a Gaussian, while in [9, 31, 33, 48, 50], �

inherently minimized thin-plate energy. In [6, 29], the ba-
sis functions were not centered at surface data points and

regularization was not applied to obtain the weights for the
implicit function. Instead, Muraki iteratively added Gaus-

sian basis functions until a suÆciently close �t is obtained.

In [28, 48, 50], reconstructions were performed on accurate,

dense cyberware scanned data. Hence, regularization was
not necessary and simply using basis functions which min-

imize a desired energy was suÆcient. In the next section,

we compare the various choices of � and discuss our selec-

tion of a basis function that minimizes multiple orders of

energy.

Figure 3 is a comparison of reconstructions of a toy di-

nosaur. The Crust algorithm was used to reconstruct the

surface shown in (a) which exactly interpolates all 20,120
data points; thin-plate basis functions were used to con-

struct the interpolating implicit surface shown in (b); and

in (c), thin-plate basis functions were used to construct the

approximating implicit surface with � set to 0.001. Only

3000 surface and 264 exterior constraints were used to re-
construct the implicit models. The approximating thin-

plate surface is much smoother than either of the other

two surfaces. The overshoots are less apparent, and there

are fewer protruding bumps and fewer small pockets em-

bedded in the surface. Unfortunately, the toy dinosaur's
features are blobby and amorphous, especially at the feet

and hands. Distinct limbs, such as the feet and tail, are

fused together. It is apparent from this result that the

thin-plate basis function used by Turk and O'Brien gener-

ates models which are too blobby.

V. A Radial Basis Function for Multiple Orders

of Smoothness

The results in Figures 3(a), (b), and (c) show that a bal-

ance is needed between a tightly �tting, or shrink- wrapped,

surface, and a smooth surface. A tightly �tting surface

separates the features of the model but is prone to jagged

artifacts. For example, the Crust reconstruction, shown in
Figure 3(a), is an exact �t to the data with no smooth-

ness constraint. On the other hand, a smooth surface may

become too blobby as seen in Figures 3(b) and (c), which

show that minimizing the thin-plate energy alone is not

suÆcient to produce a surface that separates features well
and is locally detailed.

In [10], Chen and Suter derive radial basis functions for

the family of Laplacian splines. The basis functions are
comprised of jrjk , jrjklogjrj, exponential, and Bessel func-

tion terms, where r is the distance from the center of the

radially symmetric basis. The value of k depends on the

dimension and order of smoothness. Turk and O'Brien

use �(r) = jrj2logjrj for 2D thin-plate interpolation, and
�(r) = jrj3 for 3D thin-plate interpolation. Figure 4(a)

shows that these functions exhibit global inuence because

the value of the function tends toward in�nity as the dis-

tance from its center increases. The system matrix, which

consists of the evaluation of the basis function at distances
between pairs of constraints, is dense because constraint

points are uniformly spread across the region of interest.

First, second, and third order energy-minimizing splines
are also members of the family of Laplacian splines. Thin-
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(b) (c) (d) (e)(a)

Fig. 3. Reconstructions of the toy dinosaur. (a) Crust reconstruction. (b) Exact interpolation using thin-plate basis function. (c) Surface
approximation using thin-plate basis function. (d) Surface approximation using Gaussian basis function. (e) Surface approximation using
multi-order basis function.
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Fig. 4. (a) Cross sections of radially symmetric basis functions for jrj2logjrj and jrj3. (b) and (c) Cross sections of basis functions for a
combination of �rst, second, and third order smoothness for various values of Æ and � . (d) Comparison of running times to solve for
weights for the thin-plate and and for the multi-order basis functions.

plate energy is equivalent to second order energy, and mem-

brane to �rst order energy. Surprisingly, a radial basis

function that minimizes a combination of �rst, second, and

third order energies quickly falls toward zero, yielding a

better conditioned system matrix than one that minimizes
thin-plate energy alone. In [38], Suter and Chen used ba-

sis functions that minimize multiple orders of smoothness

(beyond the �rst and second order) to reconstruct human

cardiac motion. They found that a model minimizing third

and fourth order energy resulted in the smallest RMS er-
ror. They concluded that basis functions that minimize

more than just the �rst and/or second order energy gen-

erate more accurate reconstructions. In addition, as the

space dimension increases, the order of continuity of the
thin-plate spline at data points decrease. Suter and Chen

show that in 3D, the thin-plate spline basis has discontin-

uous �rst order derivatives at the data points. We chose

to use a basis that achieves �rst, second, and third order

smoothness because, unlike motion, object surfaces may
contain sharp features that are C1 discontinuous. The re-

sulting implicit function has continuous derivatives due to

the additional third order smoothness (although, the iso-

surface may not have continuous derivatives). The geomet-

ric analogy to minimizing third order energy is curvature

continuity. It has been shown in previous work by Fang and

Gossard [16] that including curvature continuity results in
improved curve and surface �tting. Terzopoulos also spec-

ulates on the use of curvature continuous stabilizers in [44].

In [10], Chen and Suter derive such a basis, using a

smoothness functional comprised of the �rst, second, and

third order Laplacian operator. The associated partial dif-
ferential equation is similar to Laplace's equation ��f =

0, but also has higher order terms:

�Æ�f +�2f � ��3f = 0 (4)

In the above equation the Laplacian operator � in 3D is:

�f =
@2f

@x2
+

@2f

@y2
+

@2f

@z2
(5)

In Equation 4, Æ controls the amount of �rst order

smoothness, and � controls the amount of third order
smoothness. The balance between Æ and � controls the
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amount of second order smoothness. The radial basis func-
tion that inherently minimizes the above energy functional

in 3D as derived in [10] is:

�(r) = 1

4�Æ2r
(1 + we

�
p
vr

v�w � ve
�
p
wr

v�w )

v = 1+
p
1�4�2Æ2

2�2
w = 1�

p
1�4�2Æ2

2�2

(6)

In the above equations, r is the distance from the center

of the radial basis function. The polynomial term spanning

the null space of the multi-order basis function is simply a

constant, P (x) = p0. Figures 4(b) and (c) show plots of

the above function for various values of Æ and � . Unlike
the plot for �(r) = jrj3, these plots show that the value of

the basis function quickly falls toward zero as the distance

from its center increases.

A. Comparison with Gaussian, Thin-Plate Radial Basis

Functions, and Spatial Smoothing

The multi-order basis function described by Equation 6

has several advantages over the thin-plate and Gaussian

basis functions used by Blinn, Muraki, Yuille, and others

[6, 51, 29]. The system matrix formed by the thin-plate

basis function is dense, and non-zero values grow larger
away from the diagonal. Computation time increases sig-

ni�cantly as more constraints are speci�ed. In contrast,

the system matrix formed by the multi-order basis func-

tion is diagonally dominant and is especially amenable to

the biconjugate gradient method of solving linear equa-
tions. Even though the matrix formed by the multi-order

basis is dense, non-zero values diminish away from the di-

agonal. Timing results show that the unknown weights of

Equation 2 were solved in 1.5 minutes using the multi-order

basis function with Æ = 10 and � = 0:01, while the system
matrix generated for the same set of 3264 constraints using

the thin-plate basis function required 7.9 minutes to solve

on an SGI Origin with 195 MHz MIPS R10000 processor.

Figure 4(d) is a comparison of running times versus num-

ber of constraints for the thin-plate and multi-order basis
functions. The increase in running time as the number

of constraints increase is fairly linear for the multi-order

basis function as opposed to the thin-plate basis. The sys-

tem matrix formed using Gaussian basis functions (with

� = 0:01) is sparse, requiring only 2.6 minutes to solve.
The system matrix is solved even more quickly with smaller

values of �, but at the cost of worse reconstructions.

In terms of reconstruction quality, the multi-order basis

function is able to reconstruct more locally detailed mod-
els while still retaining global smoothness. Both the thin-

plate and the Gaussian basis functions result in models

with overshooting surfaces. The Gaussian basis actually

forms holes embedded in the surface. The thin-plate basis

creates poorer reconstructions than the multi-order basis
because the thin-plate basis forces the surface to be too

smooth, resulting in blobby models. The Gaussian basis is

an in�nite mixture of Tikhonov stabilizers, also resulting

in surfaces that are too smooth. Figure 3 is a comparison

of reconstructions of the toy dinosaur using the thin-plate
(c), the Gaussian (d), and the multi-order (e) basis func-

tions. Note that the round protrusion beneath the arm is
the wind-up key for the toy and that the bumps on the

back are the scales and spines of the actual toy dinosaur

(see Figure 9 for two of the original images).

Another di�erence between reconstruction using the

multi-order and the thin-plate basis is in use of non-zero
interior and exterior constraints. Reconstruction using the

thin-plate basis is much more dependent on the dense

placement of exterior constraints to prevent the surface

from overshooting into regions where the model should not

exist and on the placement of interior constraints to de�ne
the orientation of the surface. In [48], Turk and O'Brien

pair each surface constraint with a normal constraint that

is interior to the surface and has a function value of 1.0.

The multi-order basis does not overshoot as much as the

thin-plate basis. Hence, a sparse, uniform spread of exte-
rior constraints are enough to orient the implicit surface.

We have found in practice, that approximately one exterior

constraint for every ten surface constraints is suÆcient and

that interior constraints are unnecessary. More details are

provided in Section VI-A on how exterior constraints are
obtained.

The real voxel coloring data sets we use, described in

Section VII, are embedded in a global grid structure. In

such cases, it is possible to spatially smooth the data in

3D and obtain a smooth reconstruction through iso-surface

extraction. Note that this is not true in the general case
where the input data set may be unstructured. As it turns

out, the multi-order prior we use can give reconstructions

that are very similar to spatial smoothing when Æ and �

are appropriately set to be smooth. Figure 5 compares the

reconstruction of the toy dinosaur using spatial smooth-
ing and using the multi-order basis. The similarity of

these reconstructions show that the multi-order basis is

indeed closely related to spatial smoothing. As noted in

[43], spatial smoothing tends to shrink features (such as
the paws of the dinosaur), while volumentric regularization

does not. An added advantage of using energy-minimizing

basis functions is that it can create smooth reconstruc-

tions of unstructured and non-uniform data, to which spa-

tially smoothing cannot easily be applied. Uniform spatial
smoothing of unstructured data would require a resampling

step to integrate all data points into a structured grid, as

was done in [12]. In addition, the parameters, Æ and � ,

associated with the multi-order basis allows �ner control

over how much smoothing is applied. For example, in Fig-
ure 3(e), Æ and � were set to preserve the scales and spines

on the back of the toy dinosaur which is lost by too much

smoothing in Figure 5.

VI. Constraint Specification

As described in Section IV-B, the implicit function we
reconstruct evaluates to zero on the surface, positively in-

side the surface, and negatively outside. The data sets

we use to perform the reconstruction is from passive range

scanning. Such data sets are noisy, low in resolution, and

more sparse than data sets from active range scanning. We
describe the data sets in more detail in Section VII. In this
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(a) (b)

Fig. 5. (a) Iso-surface extraction of volumetric data after spatial smoothing using a Gaussian �lter with a radius of four voxels. (b)
Reconstruction using the multi-order basis function with 3000 surface constraints and Æ = 10:0 and � = 0:025.

section, we describe the method by which we obtain surface

and exterior (negative) constraints used in the reconstruc-

tion. We also address the sampling required to guarantee

that the topology of the object is correctly reconstructed
and how this sampling density is mapped to the selected

values for the parameters, Æ and � , controlling the amount

of �rst and third order smoothness respectively.

A. Exterior Constraints

The computer vision community has developed many
methods to acquire 3D positional information from pho-

tographic images taken by cameras. The goal of all these

methods is to determine a collection of 3D points that lie on

a given object's surface. When such a collection of points is

acquired using cameras, the camera position and direction
provide additional information that can be used for surface

reconstruction. If a surface point is seen from a particular

camera, there are no other surfaces between the camera

and the point. We call the region between the camera and

the surface free space. Other approaches to surface recon-
struction make use of this information as well [12]. We can

use this a priori knowledge about the object surface loca-

tions and the free space to de�ne constraints that lie on or

outside of the object, as seen in Figure 6.

Recall that the exterior constraints are those locations

where we want our implicit function to be negative, and the

surface constraints are where the implicit function should

evaluate to zero. In practice, we place exterior constraints
at the same distance away from the surface constraints to-

wards the camera viewpoints and assign them a function

value of -1.0. As mentioned in Section IV-B, exterior con-

straints do not represent actual data, but rather, are hints

to the surface orientation. Hence, a sparse sampling of
exterior constraints is suÆcient to properly orient the sur-

face, and a large value of �, such as 2.0, indicates that

the negative data point should be highly approximated.

We have found that one exterior constraint per ten surface

constraints works well in practice. An additional sparse
set (about 16 points) of exterior constraints on a bounding

*

-

free space*
**
**

-
-- --
-
---
---

Fig. 6. Free space is carved out by rays projecting from the camera
to the object surface. Surface (*) and exterior (-) constraints are
de�ned by the free space.

sphere around the object helps to constrain the surface,

and alone, is often suÆcient to de�ne the surface orienta-

tion. Next, we discuss how we subsample both the exterior

and surface constraints.

B. Subsampling Surface Constraints

Because our method of reconstruction requires the solu-

tion of a linear system, it is computationally limited in the

number of constraints that can be used to construct the

surface. Examples shown in this paper have used around
3000 surface points, sampled from a set of around 20,000

surface points. Using the entire data set would not only be

intractable, but would also result in an implicit function

that is equal in size to the original discrete data set. In

this case, the representation would no longer be compact.

The sampling density of a reduced data set must be such

that the features in the data are well sampled. Since this

information is not known a priori, our approach is to uni-

formly sample the data and then map this sampling density

to appropriate Æ and � parameters. Surface points from the
full data set are randomly selected. Each time a sample

is selected, the neighboring samples within a small radius

are eliminated from possible selection in the next round.

The elimination process prevents clusters of closely placed

constraint points, and resembles a 3D version of Poisson
disc sampling. We have applied this method to uniformly
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Fig. 7. Reconstructions of the head of the toy dinosaur. Left: recon-
struction using full data set (3173 surface points). Right: recon-
struction using a subset of available data (477 surface points).

subsample the voxel coloring data and exterior constraints
previously described.

Experiments show that the reduced data set is suÆcient

to capture the details present in the noisy data. Figure 7 is
a comparison between reconstructions from the entire data

set and from a sampled subset. The full data set consists

of 3173 surface points, while the reduced set consists of 477

points. The total distance, or error, between the original

3173 surface points and the surface reconstructed from the
full data set was 0.008, while the total error between the

3173 surface points and the surface reconstructed from the

reduced set was 0.009. The model itself was constrained to

be within a 2 � 2 � 2 box.

Adaptively increasing the sampling in highly detailed re-

gions is not appropriate in many vision-based data sets.

Detailed regions are often synonymous with areas of high

curvature and small area. In a vision-based system, these
small areas map to few pixels in the acquired images, result-

ing in low con�dence for such regions. Increasing the sam-

pling density in these small, detailed regions would taint

the reduced data set with many low con�dence points.

It is possible to partition the data set, construct a sepa-

rate implicit surface for each partition, and then combine

the surfaces. However, the resulting representation would

not be compact. We opted not to take this approach since
the di�erence in the �tness errors between the full and the

reduced data sets was minimal. Yngve and Turk [50] and

Carr et al. [9] have also shown that it is unnecessary to

have a basis function for each surface point. Their approach

was to iteratively add basis functions until the �tness error
was suÆciently low. We avoid an iterative solution by uni-

formly sampling the data set. One drawback of the uniform

sampling approach is that noise at the scale of features can-

not be removed. Some examples of this e�ect are shown in

the toy dinosaur's chest area.

C. Mapping Surface Sampling Density to Æ and � Values

Recall from Section V that Æ controls the amount of �rst
order smoothness, while � controls the amount of third or-

der smoothness. The values of Æ and � that correspond

to the best reconstruction of a surface is dependent on the

sampling density of the surface and the desired smoothing.

In our work, we maintain consistent average sampling den-
sity across all models by constraining the size of the model

and by using nearly the same number of surface constraints
to cover the data set. We scale all the models to lie within a

2 � 2 � 2 box. By applying this normalization, the feature

size, average sampling density, and choice of Æ and � are

consistent across all models. This normalization is appro-
priate because all our input data sets have approximately

the same resolution. One measure of this normalization is

the average minimal distance between sample points. We

compute this distance by averaging the distances between

each sample point and its closest neighboring sample point.
We show later in Section VII where we discuss the data sets

in more detail that this average minimal distance is similar

across all data sets after normalization and sampling.

We chose appropriate values for Æ and � by comparing
models that have been reconstructed at various values of Æ

and � . We have two methods of validation and comparison

between the reconstructed models. These methods are a

measure of �tness error and a measure of average curvature.

We de�ne �tness error to be the aggregate distance between
the original data points and the reconstructed surface. To

measure the average curvature of a surface, we �rst extract

a polygonal model from the implicit function. We measure

curvature at each vertex of the polygonal model using an

approximation that was developed for the smoothing oper-
ator in [13]. The average curvature is obtained by dividing

the aggregate curvature by the number of vertices in the

polygonal model. High curvature is associated with sharp

features in the surface, while low curvature is associated

with overshoots and blobby surfaces.

We applied the measures of �tness and curvature to the

toy dinosaur data set to guide selection of appropriate val-

ues for �, Æ, and � . For details on the selection of these
values, see our technical report [14]. We have found in

practice that values of � between 0.001 to 0.003, Æ between

5.0 to 40.0 and � between 0.005 to 0.025 can be used to pro-

duce locally detailed, yet globally smooth, reconstructions

with minimal error on a variety of data sets.

D. Handling Outliers

Outliers are handled by a preprocessing step that �nds

the largest connected component in the data set. For the

voxel coloring data set, we traverse the volume of surface
points and group together voxels that are within the 26-

neighborhood of each other. The single, largest connected

component is kept, and all other surface points are elimi-

nated. If n components exist (where n > 1), then we can

sort the components in the data set according to their size,
and keep only the �rst n largest components.

E. Topology Adaptation

One of the main advantages of the variational implicit

surface technique is its ability to reconstruct models of ar-
bitrary topology without explicit knowledge of the topology

of the model beforehand. The resulting topology is, how-

ever, dependent on the data samples used to reconstruct

the model. It is necessary to suÆciently specify surface

and exterior constraints to de�ne the topology. For ex-
ample, if a torus is to be reconstructed, then at least one
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exterior constraint is needed near the torus hole to force the
existence of the hole in the middle of the torus. As long as

the surface and exterior space are uniformly sampled, the

topology is correctly reconstructed. However, since we are

using data from vision-based methods, view occlusion or a
lack of reference views may prevent correct sampling of the

space. For example, if no views of the torus showing the

hole in the center are available, then the hole may not be

correctly reconstructed. We argue, that in such a case, the

topology of the reconstructed model is consistent with the
ambiguity of the topology in the data set.

VII. Results

We now show that volumetric regularization generates

globally smooth, yet detailed, surfaces and discuss the ad-

dition of color to the models. We reconstructed surfaces

using the multi-order basis on two types of data { synthetic

range data and real voxel coloring data. Our method of re-
construction can generate smooth surfaces from data sets

that are globally unstructured and noisy. Although neither

types of data sets we use have both these features, each is

an example of one feature. The synthetic range data is not

embedded in a global grid, while the voxel coloring data is
quite noisy in comparison to active range scanning data.

A. Synthetic Range Data

We use a modi�ed ray-tracer [24] to generate synthetic

range images as one test of our approach. We used the

Stanford Bunny as our test model, and created three syn-

thetic range images from positions separated by 120 de-
grees on a circle surrounding the model. For each range

image, surface constraints are created by uniformly down-

sampling the range image to reduce the size of the data

set. For every ten surface constraints, one exterior nega-

tive constraint is created within the free space described in
Section VI. Additional exterior constraints are de�ned on

a sphere surrounding the bounding box of the object at a

distance farther away from the object. Figure 8(a) shows

the original Stanford Bunny model consisting of 69,451 tri-

angles, while (b), (c), and (d) show the implicit surface re-
constructed from 2168 surface and 193 exterior constraints

using the multi-order basis function. Figures 8(c) and (d)

also show the distribution of the constraints overlayed on

top of the reconstruction. The average minimum distance

between surface samples used in the reconstruction is 0.051.
Values of � = 0:001, Æ = 10, and � = 0:01 were used to re-

construct the surface. The implicit surface is quite similar

to the ground truth. Our method of reconstruction pro-

duces plausible surfaces even in locations where the data is

sparse. The model is closed on the top and bottom of the
Bunny even though few constraint points were placed there.

The model is closed at these places due to the inherently

manifold nature of implicit surfaces, and it is smooth at

these locations by virtue of minimizing the cost functional.

B. Real Volume-Carved Data

Synthetic data does not have the noisy characteristic of
real data. We now describe the real space carved data

that we use and how we de�ne the surface and exterior
constraints. We use three data sets of real objects ob-

tained through voxel coloring [35, 11] { a toy dinosaur

(from Steve Seitz [35]), a broccoli stalk, and a stack of toy

tori (from Bruce Culbertson and Tom Malzbender [36] and
referred to as the towers data set). Both data sets were ob-

tained by taking about 20 images approximately on a circle

around each object. Thin-shelled, voxelized surfaces were

then constructed using the generalized voxel coloring algo-

rithm [11]. The space is carved by splatting each visible
voxel towards each calibrated camera and determining the

consistency of the color across the images. If the variance

in color intensity is below a speci�ed threshold, the voxel

is kept as part of the object surface. Otherwise, it is cast

out and assigned a zero opacity value. The data consists of
red, green, and blue channels. Non-empty voxels represent

the presence of a surface, as deduced by the voxel coloring

algorithm. Figure 10 shows the real voxel coloring data

sets.

We apply the technique described in Section VI to ob-

tain surface and exterior constraints for the voxel coloring

data set. Non-empty voxels are surface locations. Exterior

constraints are found by projecting each surface voxel in

the volume to the image plane of each camera. If the ray
from the surface voxel to a camera intersects other surface

voxels, then the view of the voxel is blocked. Otherwise,

the camera has an unobscured view, and an exterior con-

straint can be placed at a small distance away from the

surface voxel along the ray towards the camera, as de-
picted in Figure 6. Note that for each surface voxel, an

exterior constraint is created for each camera that has an

unobscured view of the surface voxel. Again, only a subset

of the surface and exterior constraints are selected by the

Poisson disc sampling technique in Section VI-B. Once a
speci�ed number of constraints have been collected, they

are given to the reconstruction algorithm. In this paper,

we have used from 2000 to 3000 surface constraints. We

have found that 100 to 300 exterior constraints suÆce to

de�ne the orientation of the surface. Figure 10 shows ex-
amples of our reconstructions from space carved data. The

average minimum distance between surface samples used in

the reconstruction for the toy dinosaur, broccoli, and tow-

ers data sets are 0.035, 0.041, and 0.042, respectively. Note

that the bumps on the back of the dinosaur are the scales
and spines of the actual toy. The small protrusion near the

base of the broccoli stalk is an actual leaf that has been ac-

curately detected by the voxel coloring algorithm and has

been correctly sampled and reconstructed by the method

we describe in this paper. The running time for Marching
Cubes [27] to extract an iso-surface is dependent on the de-

sired resolution of the model and the number of terms (or

constraints) in the implicit function. Surface extraction of

the toy dinosaur at the resolution shown in Figure 10 took

14.5 minutes.

C. Model Coloring

In order to create a color version of the surface, we be-
gin with a polygonal model that was obtained through iso-
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(a) (b) (c) (d)

Fig. 8. Part (a) is the original Stanford Bunny consisting of 69,451 triangles. Parts (b), (c), and (d) show the reconstructed surface using
the multi-order basis reconstruction method of this paper. Parts (c) and (d) show the surface constraints (blue squares) and the exterior
constraints (green squares) used in the reconstruction overlayed on top of the reconstructed surface. Note that the reconstructed surface
is closed on the top and bottom even though few constraints are present.

Fig. 9. Each pair of images is a comparison of the original input image used to generate the voxel coloring data set (left) and the reconstructed
implicit model rendered from the same camera viewpoint (right). A novel viewpoint of the implicit model is shown in Figure 10

surface extraction using Marching Cubes [27]. We assign a

color to each triangle of the polygonal model by reproject-

ing the triangles back to the original input images. Each
triangle in the polygonal model is subdivided until its pro-

jected footprint in the images is subpixel in size, so that

it can simply take on the color of the pixel to which it

projects. In most cases, a triangle is visible in several of

the original images. We combine the colors from the di�er-
ent images using a weighted average. The weight of each

color contribution is calculated by taking the dot product

between the triangle normal and the view direction of the

camera that captured the particular image. Cameras with

viewing directions that are nearly perpendicular to the tri-
angle normal contribute less than those with viewing direc-

tions that are nearly parallel to the triangle normal. We

use z-bu�ering to ensure that only cameras with an unob-

scured view of the triangle can contribute to the triangle

color. Figure 10 shows the �nal models of the toy dinosaur,
broccoli, and towers from novel viewpoints after color has

been applied. Figure 9 is a comparison of two of the origi-

nal input images of the toy dinosaur with rendered images

of the reconstructed implicit surface from the same camera

viewpoints.

D. Limitations of Volumetric Regularization

Surface reconstruction using volumetric regularization

does not generate surfaces with boundaries. Instead, our
method closes over gaps in the data set to construct a man-

ifold surface. Open surfaces can be generated by placing

limits on the iso-surface extraction.

As noted in Section VI, the features and topology of the

reconstructed model is dependent on the density of the in-
put data set. Features that are not inherent in the data will

not be reconstructed. Conversely, noise that is the size of

features will become embedded in the reconstruction. This

limitation is common to most methods of reconstruction
and smoothing.

Our method of reconstruction requires the solution of

a matrix system. This requirement constrains the size of

the data sets that we can reconstruct due to speed and

memory limitations. Recently published work by Carr et
al. [9] on reconstructing surfaces from dense, precise data
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88679 voxels δ = 5, τ = 0.025

29882 voxels δ = 5, τ = 0.025

20120 voxels δ = 25, τ = 0.01

Fig. 10. From left to right: original voxel data sets from voxel coloring, our new implicit surface reconstructions using the multi-order radial
basis function, and textured versions of our reconstructions. From top to bottom: toy dinosaur, broccoli, and towers data sets. 3000
surface constraints were used to construct the implicit surfaces.
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sets using the thin-plate spline o�ers an eÆcient solution
to the variational implicit method. We believe that their

work using the Fast Multipole Method can also be applied

here with the multi-order basis.

VIII. Conclusion and Future Work

The reconstruction algorithm we have presented in this

paper generates models that are smooth, seamless, and

manifold. Our method is able to address challenges found

in real data sets, including noise, non-uniformity, low res-

olution, and gaps in the data set. We have compared our
technique to an exact interpolation algorithm (Crust), to

thin-plate and Gaussian variational implicits, and to the

original volumetric reconstruction using the toy dinosaur

as a running example. Obvious advantages to the mod-

els generated by volumetric regularization are that there
are no discretization artifacts as found in volumetric mod-

els, and the surface is not jagged as in the Crust recon-

struction. Volumetric regularization can generate approx-

imating, rather than interpolating, surfaces, and is most

closely related to the thin-plate variational implicit sur-
faces. It compares favorably to the thin-plate variational

implicit surfaces in computation time as well as in the sur-

faces that are generated. Using the multi-order radial ba-

sis function, volumetric regularization generates locally de-
tailed, yet globally smooth surfaces that properly separate

the features of the model.

We have adapted the variational implicit surfaces ap-

proach to real range data by developing methods to de�ne
surface and exterior constraints. Although surface points

are directly supplied by the range data, we have introduced

new methods for creating exterior constraints using infor-

mation about the camera positions used in capturing the

data. We have applied this technique to space carved vol-
umetric data and synthetic range images.

We plan to look at several potential improvements to

our approach, including use of con�dence measurements
and modifying the basis functions locally. For each 3D

surface point obtained from the generalized voxel coloring

algorithm, the regularization parameter, �, can be assigned

based on the variance of the colors to which the surface

voxel projects in the input images. Another alternative is
to assign di�erent Æ and � values for the multi-order basis

according to the curvature measure at constraint points.

These future directions hold promise of further re�ning the

sharp features of reconstructed surfaces of real world ob-

jects.
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