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F igure 1: C ontinuous F VR of irregularly sampled datasets: (a) S P X, (b) C ombustion E ngine, (c) and (d) computational fluid dynamics (C F D)
particle concentrations, (e) and (f) G hiradelli S quare. Input data for C F D data and G hiradelli S quare are shown to the left of their X-rays.

ABSTRACT

We describe a Fourier Volume Rendering (FVR) algorithm for
datasets that are irregularly sampled and require anisotropic (e.g.,
elliptical) kernels for reconstruction. We sample the continuous
frequency spectrum of such datasets by computing the continu-
ous Fourier transform of the spatial interpolation kernel which is
a radially symmetric Gaussian basis function (RBF) that may be
anisotropically scaled. While in the frequency domain, we can ap-
ply signal processing filters to the dataset before performing an in-
verse 2D Fourier transform to obtain the X-ray projection.

Index Terms: I.3.3 [Computing Methodologies]: Picture/Image
Generation —Display algorithms

1 INTRODUCTION

Fourier Volume Rendering (FVR) was presented separately by
Dunne [4], Levoy [6], and Malzbender [7]. FVR generates an X-
ray projection (summed volume rendering) of a 3D volume using
the Fourier Projection-Slice Theorem. The theorem states that a 2D
slice passing through the origin of the 3D Fourier transform is the
2D Fourier transform of the projection of the 3D space in the direc-
tion orthogonal to the slice. In conventional FVR, the 3D Fourier
Transform of the volume is computed in a pre-processing step via
the discrete FFT. Interpolating a 2D slice and transforming it back
to the spatial domain via an inverse 2D DFT is an O(N 2logN ) op-
eration that requires careful design of a frequency domain interpo-
lation kernel to avoid ghosting and attenuation in the spatial do-
main [7]. The Non-uniform Discrete Fourier Transform (NDFT)
extends the Fourier transform to irregularly sampled data, but with
limits on the degree of irregularity [8]. [9] uses the NDFT to re-
grid originally irregular datasets into a regular domain but does not
anisotropically scale the kernels, resulting in gaps in the X-rays.
Our contribution is an algorithm that samples at arbitrary res-

olution the continuous frequency spectrum of irregularly sampled
datasets. Instead of using the discrete Fourier transform, we sample
the continuous Fourier transform of the spatial interpolation kernel
– a Gaussian radial basis function (RBF) which may be anisotrop-
ically scaled and located at irregular spatial intervals. We then use
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the inverse 2D DFT to obtain the X-ray image. By doing so, we
defer discretization which, as suggested in [1], can reduce propaga-
tion of the associated errors in the visualization pipeline. We call
this approach continuous Fourier Volume Rendering. With a con-
tinuous frequency spectrum, our FVR algorithm does not need to
interpolate discrete frequency samples or deal with aliasing in the
frequency domain. We describe how to properly sample the fre-
quency spectrum of anisotropic RBFs to avoid aliasing and present
an optimal GPU algorithm for FVR of irregularly sampled datasets.

1.1 Computing the Continuous Frequency Spectrum

A summation of weighted RBFs has been used as a data interpolant
in many domains, including volume rendering:

f (�x) =
n
∑
i=1
wiφi(�x−�ci) (1)

In the above equation, φi are the interpolation kernels; n is the
number of scattered samples; ci are the data points (centers of the
kernels); and wi are densities associated with each data point. The
continuous Fourier transform of the above, as derived in [2], is:

F(ω) =
n
∑
i=1
wie− j2πω�ciΦi(|ω|) (2)

Φi(|ω|) is the Fourier transform of φi, and e− j2πω�ci is due to
applying the Fourier Shift Theorem to RBFs centered at �ci. The
RBF we use is the Gaussian kernel used in splatting (φ(r) = 2−r2 )
whose generalized Fourier Transform is: 1
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For regularly sampled datasets, φi is isotropic and identical (ho-
mogeneous) for all data points. The i subscript can be dropped
and Φ(|ω|) can be pulled outside of the summation. In this case,
Φ(|ω|) is a radially symmetric function and essentially behaves as
a low-pass filter. In a more general approach, we allow φi to be
rotated and scaled uniquely and anisotropically for each data point.
Anisotropic scaling may be the result of sampling data on curvilin-
ear or non-uniform rectilinear grids or from kernel fitting optimiza-
tion techniques [3, 5] that incorporate more advanced data-sensitive
constraints. To compute the frequency spectrum for anisotropic
RBFs, we apply the Fourier Scaling Theorem.

2 FREQUENCY S PE CTRUM OF ANISOTROP IC RBFS

We must address two key issues to achieve continuous FVR on the
general anisotropic formulation: (1) define the sampling require-
ments in frequency space to ensure that high frequency information
is retained while preventing aliasing in the spatial domain (result-
ing X-ray), and (2) optimize sampling of the frequency spectrum



since Φi(|ω|) cannot be pulled out of the equation. The minimum
number of frequency samples N depends on the period size T and
the highest frequency component ωmax which is inversely related
to the smallest spatial interval t (ωmax = 1/t). Thus, the number of
required freqency samples is N = T/t.
For anisotropic RBFs, the required sampling density depends on

RBF scaling. When the scaling is less than 1 (compressed RBFs),
the data points are, in effect, brought closer together. The minimum
spatial interval is further reduced, requiring a denser sampling of
the frequency spectrum: N = T/(s∗t) and ωmax = 1/(s∗t) where s
is the minimum RBF scaling. As a result, N and ωmax increase as s
approaches 0. Most datasets do not exhibit excessive compression,
and N and ωmax do not become prohibitively large.
To efficiently compute the frequency spectrum using the GPU,

we precompute Φ and store it in a texture. We then compute a slice
of the frequency spectrum by rendering a quad to accumulate the
shift factor e− j2πω�ci on a per-fragment basis. To further optimize
the GPU implementation, we can rotate and anisotropically scale
the texture coordinates used to texture map the RBF footprint in
the CPU. This reduces per-fragment computations and relies on the
GPU’s linear interpolation of the texture coordinates to sample the
RBF footprint rather than computing the rotation and scaling in the
fragment shader. The optimization does reduce the computation
time for the frequency spectrum as shown in Figure 3, but some
blurring is apparent in the resulting X-rays due to the interpolation.
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F igure 2: C P U and G P U times for computing a 2D frequency spec-
trum of anisotropic datasets. All G P U times are under 10 secs.

3 R E SULTS

We apply continuous FVR to three types of irregularly sampled
datasets. The SPX (4,011 pts, Fig. 1a), Blunt Fin (15,256 pts), and
Combustion Engine (46,805 pts, Figs. 1b and 4) datasets were from
fitting elliptical basis functions to a local Delauney triangulation of
the dataset [5]. The CFD data (3,652 pts, Figs. 1c and 1d) is a vol-
ume of particle concentrations of the New York harbor sampled on
a curvilinear grid. The Ghiradelli Square dataset (2,762 pts, Figs. 1e
and 1f) came from anisotropic RBF fitting [3]. The colors in the X-
rays are generated by applying a transfer function to the resulting
2D X-ray images, not to the original volumetric datasets.

3.1 X-rays and Timing Results

Visually, our X-ray results are similar to splatting and more contin-
uous than Non-uniform DFT. An advantage of our algorithm is that
it is highly amenable to computation on the GPU (GPU times are
orders of magnitude faster than CPU times). In Figure 2, we com-
pare timing results for continuous FVR on the CPU (Intel 2 Quad
2.4 GHz) versus the GPU (Nvidia GeForce 8800 GT).
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F igure 3: Timing results for different G P U algorithms.

3.2 Filtering, Zooming, and Frequency-sensitive X-rays

We can apply low, band, and high-pass filters to the frequency spec-
trum before restoring the data to the spatial domain via the inverse
DFT. These operations are implemented via a multiplication of the
spectrum with a box filter which retains the desired frequencies and
zeros out the remaining frequencies. Depending on the filtering or
zooming operation, this can be achieved on the graphics hardware
by scaling up or down the texture coordinates of the RBF spectral
footprint or the quadrilateral to which the texture is mapped.

F igure 4: Left and center: Low and high-pass filtering of the C om-
bustion E ngine. Far right: C olor is applied based on frequency band
instead of opacity for a frequency-sensitive transfer function.

With a frequency spectrum, we are able to generate frequency-
sensitive X-rays by applying a transfer function based on frequency
bands rather than opacity values. We do so by transforming each
band back into the spatial domain via the inverse DFT, applying
a transfer function to the resulting filtered X-ray, and blending all
X-ray bands into a final image as shown in Figure 4.
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