
Multi-layered Image-Based Rendering

Sing Bing Kang
Compaq Computer Corporation

Cambridge Research Lab
One Kendall Square, Bldg. 700

Cambridge, MA 02139
sbk@crl.dec.com

Huong Quynh Dinh
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332-0280

quynh@cc.gatech.edu

Abstract
In this article, we describe a multi-layered image-based

rendering system that can use different types of input to
produce and render new environments. Each separate
input that can be manipulated independently is called a
layer. In our implementation, the types of layers that can
be manipulated are the image-based and 3-D-based lay-
ers. The computation required for rendering the newly-
crafted environment is reduced by using cached com-
posite snapshots of that environment at reference poses.
These cached snapshots are used to directly generate novel
views, and the original layers are used only when neces-
sary. Another key concept is the identification of types
of holes generated as a result of pixel transfer from the
composite snapshots to the generated view. For optimal
rendering quality, the algorithm used in filling these holes
is specific to the hole type (either intralayer or interlayer).
The ideas embodied in our multi-layered IBR system are
useful in augmenting the capabilities of applications that
require fast and geometrically consistent rendering of 3-D
scenes such as video editing.

Keywords: Image-based rendering, layered representa-
tion, trilinear/trifocal tensor

Introduction
3-D scene rendering is accomplished either through the
conventional graphics pipeline of manipulating and pro-
jecting a 3-D model or using techniques that operate on
a collection of input images. The latter, also known as
image-based rendering (IBR), generally has the positive
characteristics of having rendering speeds independent of
scene complexity, non-reliance on 3-D graphics accelera-
tors, moderate CPU costs, and excellent potential for pro-
ducing realistic-looking output. Classifications of image-
based rendering techniques are described in detail in [7].

The work described in this article falls into a category of
image-based rendering techniques called geometrically-
valid pixel reprojection, or transfer methods. This kind
of method uses a small number of images to gener-
ate novel views based on feature correspondences across

the images and applies computer vision techniques such
as stereo, structure from motion, or projective recovery
for the pixel transfer computation. Our proposed tech-
nique extends existing methods to allow the creation of
new and geometrically-consistent environments from dis-
parate sources. This is accomplished using a layered rep-
resentation. In our representation, each layer is deemed
to be different if it comes from a different source, or its
pose can be independently controlled relative to all other
layers.

Prior Work
The fundamental limitation of prior IBR methods is their
assumption that images used in reprojection represent a
static scene taken from multiple camera viewpoints. This
is a reasonable assumption in visualizing models of a sin-
gle rigid object or scene, but it is inadequate for applica-
tions such as video editing and synthesis, where there are
likely to be multiple moving objects of interest. We over-
come this limitation by introducing the notion of multiple
layers of video into image-based rendering. We handle
multiple rigid motions by assigning each one to a separate
video layer. In our multi-layer IBR algorithm, each layer
is reprojected separately, and the reprojected layers are
combined to form the total image.

Layered video representations including correspon-
dence information are described in [19] for video cod-
ing. However, this work does not describe a geometri-
cally correct rendering algorithm and a means for editing
the models or combining models from multiple sources to
generate novel video sequences. Rather, it simply focuses
on coding an existing sequence efficiently. Conventional
video editing systems, such as the Avid system described
in U.S. Patents 5,644,364 [8] and 5,654,737 [3], also em-
ploy a layered representation but do not include geometric
information and cannot support geometrically-valid 3-D
rendering.

In Baker and Szeliski’s work [2], they refer to layers
as disconnected image regions, each of which having dis-
continuous depths relative to all others. They describe a
technique that, given the segmented regions in multiple



images, iteratively estimate the depth at each layer. In
our work, we would consider the result of this “multi-
layered” stereo recovery technique as being one layer or
multiple layers, depending on whether they are treated as
a whole or independently (respectively) in generating new
environments.

In another related work, Shade et al. [16] described a
rendering technique that uses in part a layered-depth im-
age, or LDI, in which multiple depths may be encoded
within a single pixel. The depth is constant within each
layer. This is not necessarily so for our notion of a layer.
Their technique extends McMillan and Bishop’s painter
algorithm [11] to transfer all depth levels within each
pixel. In comparison, we cache a pair of views; new views
are computed using these cached views first before filling
in possible holes.

Organization
In this article, we describe the architectural concepts of
our multi-layered IBR system in Section , which allows
the inclusion of different types of inputs (i.e., layers) such
as stills, video, and 3-D models. To set the stage for multi-
layered IBR, we describe pixel transfer mechanism for a
single layer in Section . Subsequently, Section details
how the composite from the different inputs are gener-
ated and used to produce novel views. Experimental re-
sults using images of real and synthetic objects are shown
in Section . We provide a discussion of the merits and
disadvantages of our approach in Section , followed by
concluding remarks in Section .

We now describe the concepts for the multi-layered IBR
system. Note that not all the ideas have been implemented;
parts that have been implemented are clearly delineated
in Section .

The multi-layered IBR system
The general architecture for our proposed multi-layered
image-based rendering system is depicted in the block
diagram in Figure 1. It has four main parts: input, view
selection, viewpoint synchronization, and novel view gen-
eration. The input to the system is a set of models which
provide the sources for novel view generation. We have
identified three types of models: a collection of still im-
ages of a static scene, a matted video sequence corre-
sponding to a single coherent rigid body motion, and a
conventional 3-D graphics model. There are two basic
control inputs to the system: a reference index that spec-
ifies which part of each model should be rendered, and a
virtual view that specifies the virtual camera which will
be used to render and composite all of the models.

The first processing step in the block diagram is an
intra-layer indexing stage, in which the reference indices
and virtual views are used to select the correct part of

Layer 1

Novel viewLayer 2

Layer N

Virtual layer viewReference index

Intra-layer
indexing

Virtual composite view

synchronization
Viewpoint

generation

Figure 1: Architecture for multi-layer image-based ren-
dering system.

each model. For example, for a collection of images, one
can choose a region within the images or the image as
the reference frame. For a 3-D model, one can choose
a part or reference viewpoint. In rendering a video clip,
the reference index would specify a desired frame while
the virtual view specifies a change in the virtual camera
position relative to the true camera position. Once the
desired part of each model has been identified, each model
is rendered into a set of pixel values in an output buffer.

The novel view is usually a perturbation of the reference
viewpoints of the “background” layer, which we define as
the layer that dominates the output by virtue of its relative
size. These reference viewpoints are used as global ref-
erences; hence, after all the reference indices have been
identified, each layer is then transformed to be compatible
with the “background” reference viewpoints and merged
to create composite reference images. These cached im-
ages are then used to generate novel views using any pixel
transfer technique.

A point of clarification is in order. For the case where
only one image is used and the depth is known, then there
is only one “reference frame.” For the case where no
ground truth is known, at least two images are used to
create a novel view, assuming that full point correspon-
dence across these images is known. In this case, these
images are the “reference frames,” and their respective
viewpoints, “reference viewpoints.”

Multi-layered model representation
In this section, we describe in more detail the three types
of models corresponding to stills, video, and 3-D mod-
els. The expanded block diagram in Figure 2 shows each
type along with a more detailed view of the processing
steps. The first model type consists of a set of still im-
ages, not necessarily in any particular order, describing a
static scene. This model is often used to describe a static
background, which forms the backdrop for foreground ob-
jects, such as actors and actresses on a movie set. Along
with the images are a set of correspondence maps, one
for each image, that match pixels in that image to corre-
sponding pixels in the other stills. These correspondences



layer

Video-based
layer

Image-based
rendering

Image-based
rendering

Image-based

Novel view

Image
selection

Frame

View

selection

selection

Compositing

Projection

Virtual layer view

Virtual layer view

Virtual layer view

Reference image

Reference frame

Reference pose

3-D-based
layer

3-D
rendering

Virtual composite view

generation

Figure 2: Detailed view of architecture for multi-layer
image-based rendering system.

indirectly specify the relative geometry in the image data.

The second type of input data is a matted video se-
quence, or video layer. The matte is a mask which speci-
fies the pixels in each frame of the video that are associated
to the model. Each video layer describes a single coherent
rigid body motion. A video sequence containing multi-
ple moving objects would produce multiple models, each
one containing a different matte sequence which selects a
single object. As with the still image model, each video
frame has an associated correspondence map which brings
its pixels into correspondence with pixels in the previous
video frame.

In addition to the pixel and correspondence data, each
of the still and video models also contain a description of
the pose, position, and intrinsic camera parameters for the
camera for each image in the model. Intrinsic camera pa-
rameters include the focal length, aspect ratio, and image
skew.

Figure 3 shows an example output image synthesized
from two input models, a still model describing the back-
ground image of a stack of papers on a desk, and a whale
model. Note that more complicated models for objects
such as the human figure can be constructed from a col-
lection of lower-level image models with associated kine-
matic constraints (e.g., [13]).

The third and final type of input layer is a conventional
computer graphics model, consisting of a set of explicit 3-
D surfaces (whose representation may be polygons, Non-
Uniform Rational B-Splines (NURBS), etc.) with texture-
mapped or shaded surfaces. The 3-D model may be a
volumetric model as well. There is no explicitly stored
correspondence information with this model, since cor-
respondences can be generated automatically given two
viewpoints of the 3-D model.

Add
layer

pose

User changes position, scale and depth

User
changes
camera

Figure 3: Example of background with one independent
foreground object (whale figure). At the bottom right, the
virtual camera has been tilted.

Intra-layer indexing
Each input layer is represented either by a set of image
stills, a collection of video frames, or a 3-D model. In
order to synthesize images from these layers, the user must
first specify which part of each of the models to use. An
image layer, for example, consists of a number of frames,
any one of which could be used as reference for synthesis.
The reference index, along with the desired virtual camera
view, determine the specification.

In the case of a video input layer, the index specifies
a particular reference frame from the sequence, around
which new viewpoints can be synthesized (see Figure 2).
Similarly, for a collection of image stills, the user can
choose a reference image. In each of these cases the virtual
camera input specifies a camera motion relative to the
camera configuration for the reference image. In the 3-
D model case, the index is the reference pose at which
the 3-D model will be rendered using conventional 3-D
graphics. The rendered 3-D model can then be processed
in exactly the same manner as the other still-image-based
and video-based layers.

Once the intra-layer indexing is done, the system then
makes all the layers compatible by transforming all of
them to a global reference frame (for our case, correspond-
ing to the “background” layer). This allows the creation of
composite reference images, from which new views can
be generated using a pixel transfer technique.

Implemented version of multi-layer IBR system
The implemented version of our multi-layered IBR system
is a subset of the general architecture described above.
We have not implemented the analysis and manipulation
of the video layer with indexable frames. Instead, we use



only image-based and 3-D-based layers. In addition, with
regards to camera intrinsic parameters, we recover only
the camera focal length from input images.

In our implemented system, each image-based layer is
either an image with a predefined depth distribution, or is
generated using two input images using a stereo technique.
We create a new environment by interactively adding new
layers to the first existing layer, which is considered the
“background.” Direct and indirect shape encoded in each
layer is used to determine the appearance of the new en-
vironment at the same reference viewpoints as the back-
ground layer. These cached composite images are used
to generate new viewpoints, and holes that may result are
filled appropriately.

In summary, our approach comprises:

1. Generation of single layer from two images:

(a) Register images (using spline-based registra-
tion [18])

(b) Recover epipolar geometry and camera focal
length

(c) Compute trilinear tensor [1] and use it to trans-
fer pixels for the creation of novel views

(d) Fill holes (intralayer holes) through direct pixel
interpolation [6]

2. Generation of composite from multiple layers:

(a) Create a cached composite image pair from the
input layers

(b) Treat the cached composite image pair as a sin-
gle layer in generating novel viewpoints

(c) Identify types of holes: intralayer holes and
interlayer holes

• Fill intralayer holes through direct pixel
interpolation [6]

• Fill interlayer holes through limited search
(forward or inverse mapping relative to
screen space)

Image-based rendering for a single layer
There is a variety of ways that one can adopt to gener-
ate novel views from corresponded images. If the camera
parameters are known, then depth images can be com-
puted and used directly. Two other geometrically-valid
reprojection methods use the epipolar constraints (in the
form of the 3 × 3 fundamental matrix) between features
across two images [9], and the trilinearities linking fea-
tures across three images [1]. For comparisons between
these last two methods, please see [7]. In our work, we
use the trilinear tensor approach.

Image synthesis using the trilinear tensor
Our approach makes use of a standard approach to image-
based rendering using what is termed trifocal tensors, or
trilinear tensors. The trilinear tensor is a global 3 × 3 ×
3 entity that links correspondences across three images
[17]. The trilinear tensor is of the form αjk

i , with i, j, k =
1, 2, 3. Point correspondences across three images (p, p′,
and p′′) are linked by the trilinear tensor in the following
manner (using the Einstein summation convention):

pisµ
j rρ

kαjk
i = 0 (1)

with µ, ρ = 1, 2, s1
j and s2

j representing two lines inter-
secting at p′, and r1

k and r2
k representing two lines inter-

secting at p′′. There are four separate constraints associ-
ated with (1), each constraint corresponding to a different
combination of s1

j or s2
j and r1

k or r2
k.

If a trilinear tensor is known for a set of three images,
then given a pair of point correspondences in two of these
images, a third corresponding point can be directly com-
puted in the third image without resorting to any projection
computation. This idea has been used to generate novel
views from either two or three reference images [1].

The idea of generating novel views from two or three
reference images is rather straightforward. First, the “ref-
erence” trilinear tensor is computed from the point corre-
spondences between the reference images. In the case of
only two reference images, one of the images is replicated
and regarded as the “third” image. If the camera intrinsic
parameters are known, then a new trilinear tensor can be
computed from the known pose change with respect to the
third camera location. The new view can subsequently be
generated using the point correspondences from the first
two images and the new trilinear tensor.

In our work, we recover the elements of the initial tri-
linear tensor and camera focal lengths using the 8-point
algorithm [10] and an image-based metric that minimizes
projection errors.

Resampling issues
A version of the painter’s algorithm [4] is used to ensure
that pixels are transferred in the correct order so that more
distant parts of the scene are occluded by nearer parts of
the same scene. This algorithm first computes the projec-
tion of the virtual camera center on the reference image.
If the virtual camera center is in front of the camera center
corresponding to the reference image, then scanning pro-
ceeds from the outer parts of the reference image towards
the projected virtual camera center. Otherwise, scanning
proceeds from the projected virtual camera center away
from it. This variant of the painter’s algorithm was orig-
inally described in [12]. As an alternative, a standard Z
buffer approach could also be used.



In the single layer case, the final step of image-based
rendering is pixel interpolation to remove any holes that
may have been left after image transfer. Holes arise when a
small preimage patch from the reference image is mapped
onto a larger patch on the target image. Many interpolation
techniques exist; a simple but effective method is Ellip-
tical Weighted Averaging [6] which employs interpolant
kernels with adaptive sizes. Note that there is no separate
compositing step in the single layer case.

Compositing for multi-layered IBR
The primary difference between single and multiple layer
IBR is the need for a compositing stage which combines
the image transfer outputs from a set of layers into a sin-
gle image. The image transfer methods described in the
previous section can be applied independently to each in-
put layer, since each layer describes a rigid body motion.
There are two possible approaches to compositing. First,
if the depth were available at each output pixel from each
layer, standard Z buffering could be employed. Second,
the painter’s algorithm for the single layer described above
can be extended to the multiple layer case.

The painter’s algorithm has a potential advantage over
the Z buffer approach in that it does not require a depth
comparison at each pixel transfer and may not require as
much storage. The painter’s algorithm is complicated by
two factors in the multi-layer case: layers must be drawn
in depth order and missing pixels must be filled in. In
the case where there are multiple overlapping layers, care
must be taken to paint the “farthest” layers first, so pixels
from the closer layers will be painted last. This presumes
the existence of a drawing order for the layers; it may be
necessary to split some layers into multiple parts so that
they can be ordered (see [15, 4] for details). In particular,
it is possible to use a modified version of the Binary Space
Partition (BSP) tree representation described in [5] to pro-
duce ordered layers from arbitrary virtual camera views.
We did not implement the BSP algorithm, since we do not
wish to limit our representations to be piecewise planar,
as assumed by the algorithm.

The multi-layered IBR algorithm hinges on the gen-
eration of reference, or cached, images from which new
viewpoints can be generated. In the case of multiple lay-
ers, we first create cached reference composite images
using depth ordering. The user can interactively modify
the size, orientation, and position of each layer indepen-
dently. Once this has been done, novel viewpoints of the
new environment can be generated from these cached ref-
erence composite images. In other words, the composite
reference images are treated as a single new layer. The
difference is that holes caused by object disocclusion can
be filled by referring back to the corresponding layers.

The alternative is to transfer each layer separately in

generating new views. However, it may be inefficient in
cases where most of the layer regions are already exposed
in the composite reference (i.e., cached) image, and there
are only a few and relatively small regions in which oc-
clusion occur. Here, a complete rendering of all of the
other layers is undesirable, since most of their pixels will
be overwritten. We can use an alternative algorithm in
which the pixel transfer of the cached composite image is
followed by a hole filling stage (if required) in which any
remaining unspecified pixel values are rendered.

As in the single layer case, we must also employ in-
terpolation to fill holes due to sampling that result from
mapping smaller patches to larger screen areas. We term
this kind of holes intralayer holes. In the multiple layer
case, however, holes (termed interlayer holes) may occur
as a result of layer disocclusion or exposure. Interlayer
holes should not be filled in the exact same manner as
intralayer holes. Doing so would cause textures from dif-
ferent layers to be blended by interpolation, resulting in
an undesirable mixing of textures. In applying the ap-
proach of cached composite transfer followed by gap fill-
ing, we must distinguish between the intralayer and inter-
layer holes. Intralayer holes are identified by those that
are surrounded by pixels from the same layer. Interlayer
holes are surrounded by pixels from different layers.

Filling intralayer holes
As mentioned before, intralayer holes occur as a result of
mapping a smaller patch in a reference view to a larger
patch in the virtual (screen) view. Such holes can be re-
moved through any standard interpolation technique, but
our choice is to use the EllipticalWeightedAverage (EWA)
filter [6].

Filling interlayer holes
We have considered two methods for the interlayer hole
filling step, namely, forward mapping from the layers to
screen space, and inverse mapping from screen space to
the layers.

Forward mapping
In the forward mapping process, only regions of each layer
that are not part of the cached composite image are in-
volved. The general idea is to compute, for each unex-
posed pixel in each layer, its new location corresponding
to the new camera viewpoint. If a pixel is mapped to an
interlayer hole, its depth is computed and stored. Once
this is done for all the unexposed pixels, depth ordering is
then used to determine the right pixel to expose. Note that
depth computation and comparison are necessary only at
the interlayer hole locations.



Inverse mapping
This alternative method is the inverse of the forward image
transfer, as it is a kind of backprojection from a desired
pixel in the output image to a layer in the model. Out of the
possibly many pixel candidates in all the layers, epipolar
search that is based on camera geometry is used to narrow
the search and select the correct one. The search process
goes as follows: Suppose the relative camera poses for
two images are known or computed. Then for a given
pixel in one image, the corresponding pixel in the other
image is constrained to lie on a line called the epipolar
line. Using this fact, we can then find the missing pixel
by search along the epipolar lines and checking if the pixel
in question is also a corresponding point. In the event of
multiple candidates across different layers, depth sorting
is performed to choose the frontmost pixel to transfer.

Comparison between the two hole-filling approaches

Unsurprisingly, the inverse mapping approach turned out
to be highly prone to errors in both camera geometry
and point correspondences, since it relies on search along
epipolar lines and the correspondence, or disparity, map.
In cases where real images are used and no correct ground
truth is known, the challenge of recovering both accurate
point correspondences and camera geometry is very diffi-
cult, as known in the computer vision community.

As a result, there is a tendency for this technique to
either blur edges or produce an offset of texture, as ex-
emplified by Figure 4(c)). In addition, it is also slower in
comparison to the forward mapping approach. This is due
to computation associated with the epipolar search. In the
example shown in Figure 4, the rendering rate for the in-
verse mapping approach for hole filling is 0.9 frames/sec,
compared to 2.5 frames/sec for the forward mapping al-
ternative. The size of the image used is 240× 320 and the
platform on which the program was run is an Alpha PC
with an operating frequency of 533 MHz.

Other features of implementation
In addition to being able to input fully-corresponded im-
age pairs, the image-based layer can also be specified as
a single masked image with user-specified depths. In our
implemented version, its depth can be specified as flat, the
same depth variation as the background layer, or having
a global “bump.” By global “bump”, we mean a depth
distribution whose relative depth is inversely proportional
to the distance of the pixel to the boundary.

Once added into the environment, the input layer can
be interactively scaled, rotated, and translated relative to
the other layers.

(a)

(b) (c)

Figure 4: Example of interlayer hole-filling: (a) Result of
forward pixel transfer of cached composite image corre-
sponding to a new view with no hole filling, (b) Result of
forward mapping, (c) Result of inverse mapping.

Results
We have run a series of experiments involving various
image-based and 3-D-based layers, and in this section,
show a couple of sets of results. The first set uses an
image pair of an arch in a museum as the background
image-based layer; the other two layers, the buddha and
molecule, are 3-D-based layers. Snapshots of these layers,
with both changing camera viewpoints and layer poses,
are shown in Figure 5. The original image size of the
image-based layer is 320 × 240.

Figure 6 shows another set of results, this time using
only artificially created cutouts and user-defined depths.
As expected, the image quality is higher using layers with
exactly known depths and predefined camera motion as in
Figure 5.

In another experiment, we used a total of 12 layers (see
Figure 7). With the proposed cached composite method,
we get a rendering speed of 0.30 secs per frame, while
with the direct layer by layer approach, we get 0.35 secs
per frame. These numbers are based on 100 runs. The
current implementation of the cached composite method
is not well optimized, which in part explains the relatively
small improvement in performance.

Discussion
The true challenge in IBR is using real images with no
ground truth, and it is no different in our multi-layered
IBR system. Accurate correspondence is the key to pro-
viding realism in generating new viewpoints. It is known



(a) (b) (c) (d)

Figure 5: Example of multi-layered IBR: (a) Background image-based layer only, (b) Background layer with buddha
layer, (c) Same as (b), but a slight rotation of the buddha layer, (d) Change in viewpoint (slight change in camera tilt)
with buddha layer moved and a molecule layer added (and moved to behind the arch). The background in (c) “wriggles”
because of inexact correspondences between the real images of the arch. This in turn is caused by lack of texture in
certain places. The inexact correspondence has the same effect as misestimating depth.

(a) (b)

(c) (d)

Figure 6: Another example of multi-layered IBR: (a) Background image-based layer only (from a Monet painting), (b)
Addition of “Ginger Rogers” layer (at a different viewpoint), (c,d) Willy the whale jumping out of Monet’s bush (at
another slightly different viewpoint). Note that the image-based layer of the Monet painting is just a single layer with
depth, and the gaps observed are due to depth discontinuities within that layer.



Figure 7: Another experiment with 12 different layers: (Left) Original view, (Right) A side view.

within the computer vision community that extracting cor-
respondence between images is difficult. The problems
of object occlusion, lack of texture, photometric varia-
tion, and camera inperfections, which occur in practice,
pose formidable barriers to correct image registration and
recovery of camera geometry.

There is also the known problem of choosing represen-
tative viewpoints as reference in the image-based layer.
If we choose images corresponding to significant camera
motion (i.e., large baseline), image registration is made
much harder due to significant appearance changes. How-
ever, assuming that correspondence is accurate, camera
geometry and scene structure can be extracted more reli-
ably. On the other hand, images taken at small baselines
result in much easier image registration, but less robust
recovery of camera geometry and scene structure. Obvi-
ously, a compromise is to use many more images taken at
successively reasonable baselines (but at a proportionally
higher computational expense). This technique is also
known as multibaseline stereo [14].

One of the limitations of our current multi-layered IBR
approach is related to caching the composite reference im-
ages. For layers other than the “background” layer, their
transferred pixels at the composite reference images is a
result of resampling of the original sources. This resam-
pling step is necessary in order to convert their current
frames to a common frame, namely that of the “back-
ground” layer. Generating new viewpoints using these
cached composite reference images involves another re-
sampling step for these pixels, resulting in further possible
compromise in visual quality. This is the price paid for
facilitating rendering of multiple layers.

As future work, we would extend our present imple-
mentation to be able to accept and manipulate the frame-
indexable video-based layer.

Conclusions
We have described our vision for a multi-layered IBR sys-
tem that allows disparate image and 3-D sources (or lay-
ers) to be merged and manipulated to produce new envi-
ronments. In this system, the novel viewpoints of these
new environments can be produced in a geometrically con-
sistent manner through the use of both computer vision
and graphics techiques. We have identified three types of
layers: image-based, 3-D-based, and video-based. Our
implementation to illustrate our ideas currently can input
and manipulate image-based and 3-D-based layers.

Central to our multi-layered IBR system is the notion
of using cached composite reference images to generate
novel views of the new environment. This reduces the
computational cost of rendering by reusing the composite
reference images and reverting to the original layers only
when necessary. Critical to the quality of the output is the
identification of the types of holes created during pixel
transfer from the composite reference images, namely in-
tralayer and interlayer holes. A different type of hole
dictates the use of a different hole-filling algorithm for
optimal view synthesis.

Such a system can be used in any applications that re-
quire visualization of 3-D environments, such as video
editing and synthesis for the entertainment industry.

We have not yet considered lighting effects (such as
shadows) subsequent to the addition of multiple layers.
It is not immediately clear if such effects can be incor-



porated without extensive modification of our proposed
framework. This would be an interesting topic for future
work.

*
Acknowledgment

We appreciate the initial fruitful discussions with Jim
Rehg on the multi-layer image-based rendering architec-
ture that helped in the development of some of the ideas
implemented in this work.

References
[1] S. Avidan and A. Shashua. Novel view synthesis in

tensor space. In Conference on Computer Vision and
Pattern Recognition, pages 1034–1040, San Juan,
Puerto Rico, June 1997.

[2] S. Baker, R. Szeliski, and P. Anandan. A layered
approach to stereo reconstruction. In Conference
on Computer Vision and Pattern Recognition, pages
434–441, Santa Barbara, CA, June 1998.

[3] Harry Der, Barry Horne, and Jeffrey Kurtze. Media
pipeline with mechanism for real-time addition of
digital video e ffects. U.S. Patent 5,654,737, August
1997.

[4] J. Foley, J. van Dam, S. Feiner, and J. Hughes. Com-
puter Graphics: Principles and Practice. Addison-
Wesley, 1990.

[5] H. Fuchs, Z. M. Kedem, and B. F. Naylor. On visible
surface generation by a priori tree structures. Com-
puter Graphics (SIGGRAPH’80), pages 124–133,
1980.

[6] N. Greene and P. Heckbert. Creating raster Omni-
max images from multiple perspective views using
the Elliptical Weighted Average filter. IEEE Com-
puter Graphics and Applications, pages 21–27, June
1986.

[7] S. B. Kang. A survey of image-based rendering tech-
niques. Technical Report CRL 97/4, Cambridge Re-
search Lab., Digital Equipment Corp., August 1997.

[8] Jeffrey Kurtze, Ray Cacciatore, Peter Zawojski, Eric
C. Peter s, and John Walsh Jr. Media pipeline with
multichannel video processing and playback. U.S.
Patent 5,644,364, July 1997.

[9] S. Laveau and O. Faugeras. 3-D scene representa-
tion as a collection of images and fundamental ma-
trices. Technical Report 2205, INRIA-Sophia An-
tipolis, February 1994.

[10] H. C. Longuet-Higgins. A computer algorithm for
reconstructing a scene from two projections. Nature,
293:133–135, 1981.

[11] L. McMillan and G. Bishop. Head-tracked stereo-
scopic display using image warping. In SPIE Sympo-
sium on Electronic Imaging Science, San Jose, CA,
February 1995.

[12] L. McMillan and G. Bishop. Plenoptic modeling: An
image-based rendering system. Computer Graphics
(SIGGRAPH’95), pages 39–46, August 1995.

[13] D. D. Morris and J. M. Rehg. Singularity analy-
sis for articulated object tracking. In Conference
on Computer Vision and Pattern Recognition, pages
289–296, Santa Barbara, CA, June 1998.

[14] M. Okutomi and T. Kanade. A multiple baseline
stereo. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 15(4):353–363, April 1993.

[15] J. M. Rehg and T. Kanade. Model-based tracking
of self-occluding articulated objects. In Proc. of
Fifth Intl. Conf. on ComputerVision, pages 612–617,
Boston, MA, 1995.

[16] J. Shade, S. Gortler, L.-W. He, and R. Szeliski.
Layered depth images. Computer Graphics (SIG-
GRAPH’98), pages 231–242, July 1998.

[17] A. Shashua. Algebraic functions for recognition.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 17(8):779–789, 1995.

[18] R. Szeliski and J. Coughlan. Hierarchical spline-
based image registration. In IEEE Computer Society
Conference on Computer Vision and Pattern Recog-
nition (CVPR’94), pages 194–201, Seattle, Wash-
ington, June 1994. IEEE Computer Society.

[19] J.Y. A. Wang and E. H. Adelson. Representing mov-
ing images with layers. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 3(5):625–
638, September 1994.


