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1 Introduction

The goal of surface reconstruction is to obtain a continuous representation of a surface described by a cloud

of points. This problem is often called the unorganized points problem because the cloud of points has no

connectivity information. This paper surveys the solution techniques for the unorganized points problem. Two

closely related formulations of the problem are surface interpolation and approximation. Many reconstruction

techniques handle only exact interpolation, while others can vary from exact to approximate surfaces. Exact

and approximate surfaces di�er in that exact surfaces pass through the data points, while approximate surfaces

pass near the data points.

The motivation behind surface reconstruction is to obtain a digital representation of a real world, physical

object or phenomenon. Clouds of point data may be obtained from medical scanners (X-rays, MRI), laser

range �nders (optical, sonar, radar), or vision techniques (correlated viewpoints, voxel carving, stereo range

images). Often, additional information on the cloud of points may be available, such as the order in which

the data points were sampled, the orientation of the normal vector at each of the points, or the positions of

the cameras used in stereo range images. Some surface reconstruction algorithms take into consideration this

information, while others tackle the general problem.

Notions which often appear in the surface reconstruction literature include best �t, least error, distance

metric, smooth, piecewise, and energy minimizing, among others. These notions help to distinguish the

di�erent techniques. One of the primary problems in reconstruction is that a "correct" surface is not de�ned.

That is, we may have a cloud of points that is a discrete representation of an organ, but how can we evaluate

a surface reconstructed from the data? How can we decide that we have obtained a good representation of

the organ when we have no way to exactly measure the continuous surface of the organ? In addition, the data

itself may be noisy. Even if we reconstruct the surface of an object whose surface we know analytically, such

as a unit sphere or cube, we are not guaranteed that a reconstruction algorithm that perfectly reconstructs

our known object would do as well with any other unknown object. As a result, notions such as least error,

distance metrics, smoothness of the surface, and energy minimizing become important metrics with which to

evaluate a reconstructed surface. In one scenario, the best reconstruction is one that minimizes the distance

between all data points and the reconstructed surface.

This paper compares several of the recent techniques in the universe of surface representation and recon-

struction. In particular, more attention is given to the algebraic domain than to the computational geometry

domain. There are three primary categories of surface representations:

Parametric The surface is represented by a patch, described by a parametric equation. Multiple patches

may be pieced together to form a continuous surface. Examples of parametric representations include

B-spline, Bezier, and Coons patches. The basic parametric formulations such as B-splines will not be

discussed in this paper. Instead, two examples of reconstruction to parametric representations will be

presented. Sections 5 and 6 cover Terazopoulos' thin-plate parametric representation and Gossard fairing

of parametric patches, respectively.

Implicit The surface is a level set surface, and is de�ned to pass through all positions where the implicit

function evaluates to some speci�ed value (usually zero). Least-squares �tting to an implicit line equation

is reviewed in section 2. The global algebraic representations used by Taubin and Gotsman are covered

in section 3. The piecewise algebraic implicit functions of Bajaj are covered in section 4.

Simplicial In this representation, the surface is a collection of simplicial complexes including points, edges,

and triangles. Techniques to identify which simplicial complex belongs to the surface include Alpha shapes
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and the Crusts algorithm. Both of these topics are covered brie
y in this paper.

2 Least-Squares Fitting

We begin with a description of least-squares �tting, one of the simplest and most frequently used techniques

for curve and surface reconstruction. This technique is especially applicable to piecewise polynomial �tting in

that the coe�cients for each polynomial is often determined by least-squares �ting. Least-squares �nds the

coe�cients for the curve or surface which minimize the squared distance between the curve or surface and the

data points. It is one method of minimal distance �tting. The distance used in minimal distance �tting may

be the orthogonal distance with respect to the curve or surface, or it may be aligned to an arbitrary axis. For

example, given a one dimensional curve in Euclidean space, y = f(x), the distance from a data point, (xi; yi),

to the curve along the y-axis is simply the di�erence between yi and f(xi). This distance is not, however, the

orthogonal distance since the curve may have a non-zero slope. To show the di�erence in �tting using these

two distance metrics, we take the concrete example of �tting a set of 2D data points to an implicit line, given

by Ax+By+C = 0. To avoid a trivial solution of (0,0,0) for A, B, and C, we divide by B and rearrange the

line equation to the following:

y = C1x+ C2 (1)

The line equation can be applied to each data point, (xi; yi) to obtain the following linear system:
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n is the number of data points. The coe�cients, C1 and C2, are found by solving the over-constrained

system using Singular Value Decomposition. By rearranging the line equation to avoid the trivial solution,

we have made the assumption that B is non-zero. The rearrangement also results in distance measured along

the y-axis.

In least-squares �tting, the squared orthogonal distance is minimized. In this case, we do not rearrange

the line equation. Instead, we can directly calculate the distance, d, of a data point to the implicit line by

evaluating the line equation, d = Ax+ By + C. The squared distance is:

D = d2 = (Ax+By + C)2 (3)

To minimize, D, the derivative of (3) is taken with respect to A, B, and C and set to zero. The resulting

equations are a linear system which can be formulated as a matrix equation:
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The matrix on the left is the outer product of a single data point, (xi; yi)(xi; yi)
t. The above system is

applied to all the data points by taking the summation of the outer products of all the points. Eigenvector

decomposition is performed on the resulting 3x3 matrix to obtain the null space of the system. The null

space is the solution because it is exactly the vector space in which the least-squares distance is zero. In this

example, the vector space is the coe�cients of the line we wish to reconstruct. In particular, the eigenvector

corresponding to the smallest eigenvalue is the solution to the unknown coe�cients.

3 Global Algebraic Surfaces

In the global algebraic scheme of surface reconstruction, the goal is to �t a trivariate polynomial to a set of

constraints. The resulting surface is the locus of points for which the polynomial evaluates to zero. The degree

of the polynomial is generally a user-speci�ed parameter. Given a polynomial of degree n, the reconstruction
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algorithm �nds the coe�cients for each term in the polynomial that results in the best �t to the data, based

on a distance metric which may be the Euclidean distance. The coe�cients may be found through steepest

descent or some other optimization technique.

These algebraic surfaces are global in that only one polynomial is used to represent the entire surface. This

global aspect results in several drawbacks to these techniques. In a one dimensional height �eld, the degree

of the polynomial determines the number of in
ection points in the resulting curve. A straight line has no

in
ections and is represented by a �rst degree polynomial. Parabolas and hyperbolas have one in
ection

point and are represented by second degree polynomials. Third degree (cubic) polynomials are needed to

represent curves with three in
ection points. In general, higher degree polynomials are needed to represent

curves and surfaces with a large number of in
ection points. In three dimensions, higher degree polynomials

correspond to highly varying surfaces and complex topology. With higher degrees, however, there are many

more coe�cients for which to solve, resulting in a higher possibility of being caught in a local minimum during

optimization. Incorrect coe�cients would be obtained that may �t the data well but does not represent the

desired surface well. As a result, there is a con
ict between using a polynomial with a degree high enough to

represent all the detail of a surface such as a bunny which has many in
ection points, and one that has few

enough coe�cients to be tractable. A second drawback of global algebraic surfaces is that the user generally

needs to select the polynomial (and thus the highest degree) to use. This selection is non-intuitive, and as in

most cases, experience of the algorithm or trial and error is necessary to obtain a desirable surface.

Two examples of global algebraic surface reconstruction techniques include the works of Gabriel Taubin and

Craig Gotsman.

3.1 Taubin's Polynomial Fitting

Taubin �tted polynomial functions to two dimensional closed curves and three dimensional surfaces. In

[10] and [11], he uses the Levenberg-Marquardt algorithms as the optimization technique to search for the

coe�cients of the polynomials. In [10], Taubin formulates the objective function to be minimized and shows

how the optimization becomes a generalized eigenvalue problem. In [11], he improves the objective function

by de�ning a new approximate distance metric.

The surface that best �ts a set of data points is often de�ned to be the surface that minimizes the Euclidean

distance to all the data points. However, as Taubin points out, measuring Euclidean distances to implicit

functions requires an iterative process. Implicit functions are not often Euclidean distance functions. Their

evaluation at an arbitrary point indicates, by the sign of the value, whether the point is on, inside, or outside

of the surface. The value itself may be an indicator of closeness to the surface but it is not the point's actual

Euclidean distance to the surface. The evaluation cannot even be considered equal to the Euclidean distance

by a scale factor because the implicit distance may be nonlinear. As a result, it is necessary to formulate an

approximation to the Euclidean distance.

In [10], Taubin uses a �rst order approximation of the Euclidean distance:

Dist(x; Z(f))2 �
f(x)2

k rf(x) k2
(5)

Z(f) is the set of zeros of the function, f(x), representing the surface. x is a data point. rf(x) is the

derivative of f(x) with respect to point x and supplies the direction and magnitude towards the surface from

point x. It indicates the location of the surface, and the distance traveled in function space per unit traveled

in point space. Intuitively, dividing the distance in function space to reach the surface (f(x) � f(surface))

by rf(x) gives an approximate Euclidean distance to the surface if the function, f(x) is roughly linear near

x. In this case, f(surface) = 0 since the function evaluates to zero on the surface. In order to minimize the

distance over the entire set of data points, the approximate distances are combined into a mean approximate

distance:
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q is the number of data points. pi is a speci�c data point. The mean approximate distance is obtained

by summing the Euclidean distances from the surface of all data points and dividing by the number of data

points. The mean approximate distance is simpli�ed to the �nal form on the right. F is a vector of the

coe�cients of the polynomial function, f(x). M and N are matrixes containing the following terms:

M =
1

q

qX
i=1

[X(pi)X(pi)
t] (7)

N =
1

q

qX
i=1

[DX(pi)DX(pi)
t] (8)

X is a two or three dimensional vector for each data point. Each product, X(pi)X(pi)
t, is the 2x2 or 3x3

outer product matrix. DX is the Jacobian matrix of X . The gradient of the function is evaluated at each

data point and stored in matrix form in the Jacobian. The entries of M and N are linear combinations of

the moments of the data points. The minimizer of the above equation is the eigenvector corresponding to

the minimum eigenvalue of the pencil F (M � �N) = 0. An analysis on the generalized eigenvector �t can be

found in the appendix of [10]. A higher order approximation of the Euclidean distance is presented in [11].

Taubin's results include both two and three dimensional curves and surfaces. He �tted a sixth order

polynomial to an image of a pair of pliers. Three dimensional surfaces were reconstructed from synthetic data

of a bean, a cup, and a torus, and range and CT data of a tooth. Taubin used fourth order polynomials for

the surface �ts.

3.2 Gotsman and Keren Polynomial Fitting

Gotsman and Keren's approach is to create parameterized families of polynomials that satisfy certain good

properties, such as a tight �t. Previous techniques use a cost or energy function that penalizes improper �ts

de�ned by the distance from the data. The aim of this work is to �nd an analytical parameterization of a

sub-family of polynomials that already satisfy desirable properties. This family must be as large as possible

so that it can include as many functions as possible. This technique leads to an over-representation of the

subset, in that the resulting polynomial will often have more coe�cients to solve for, requiring additional

computation. However, the family of larger polynomials will yield better results than the original family of

polynomials with which we start [8].

Gotsman and Keren apply their approach to both two dimensional and three dimensional curves and sur-

faces. Two families of parameterizations are presented - starshaped zero sets and convex planar polygons.

The second parameterization is also extended to 3D convex polyhedrons. We will now discuss the starshaped

parameterization in the next section. The same technique is used to derive parameterizations for convex

planar polygons and polyhedrons. Hence, derivations for the polygon and polyhedron will not be discussed in

this paper.

3.2.1 Starshaped Zero Sets

In 2 dimensions, the starshaped family of polynomials prevents pathologies such as holes, loops, folds, and

extraneous components because a starshape requires the existence of an interior point from which the entire

curve is visible. This point is called the kernel point. For simplicity, the kernel point is assumed to be at the

origin (translations of the object can make this possible).

Gotsman and Keren use a fourth order polynomial as the base function in their initial examples. As common

among global algebraic surfaces, the selection of a base polynomial is non-intuitive and is based on experience

with the di�erent classes of families. The fourth order function is:

P (x; y) = a40x
4 + a31x

3y + a22x
2y2 + a13xy

3 + a04y
4 +

a30x
3 + a21x

2y + a12xy
2 + a03y

3 +

a20x
2 + a11xy + a02y

2 + a10x+ a01y + a00 (9)
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The above polynomial can be changed to a function in x by constraining y to lie on a line through the origin.

These lines are of the form y = �x since the y-intercept is zero. Equation (5) is reformulated as follows:

P�(x) = (a40 + a31�+ a22�
2 + a13�

3 + a04�
4)x4 +

(a30 + a21�+ a12�
2 + a03�

3)x3 +

(a20 + a11�+ a02�
2)x2 +

(a10 + a01�)x+ a00 (10)

This function has 15 degrees of freedom. Roll's theorem is used to limit this polynomial to a starshaped

zero set. In summary, Roll's theorem says that if a line through the origin intersects the zero set at more than

two points (violating the starshaped constraint), then the second derivative of the polynomial with respect to

x will have at least one root. To ensure that a line through the origin intersects at no more than two points

on the starshaped surface, the second derivative is required to be positive for every x and �. The second

derivative with respect to x is of the form:

(a40 + a31�+ a22�
2 + a13�

3 + a04�
4)x2 +

(a30 + a21�+ a12�
2 + a03�

3)x+

(a20 + a11� + a02�
2) (11)

Let the above class be denoted by POS. As mentioned above, POS needs to be everywhere positive. Polyno-

mials that are everywhere positive can be generated by summing the squares of other polynomials. Additional

classes of polynomials are de�ned below:

ROOT is a polynomial which is squared to obtain elements of POS. An example of ROOT is given:

L21�
2x+ L20�

2 + L11�x+ L02x
2 + L10�+ L01x+ L00 (12)

SUMSQ is a subset of polynomials in POS which are sums of squares of polynomials in ROOT.

Given these sets of families, the following questions arise:

1. Are SUMSQ and POS identical?

No. There are everywhere positive polynomials which cannot be represented as sums of squares.

2. If SUMSQ 6= POS, does SUMSQ have a full dimension of 15 so that no degrees of freedom are lost?

The dimension of POS is equal to the number of terms. The dimension of SUMSQ is equal to the number

of monomials that can be expressed as an average of two even monomials. For example, the monomial

a30x!
5 is denoted by (0,1,5) which are the degrees of (�; x; !). It is the average of (0,2,4) and (0,0,6)

which are the monomials a40x
2!4 and a20!

6, respectively. Note that ! is used to normalize all the terms

of POS to be sixth degree monomials.

3. What is the minimal number of elements of ROOT which must be squared and summed in order to

obtain all the elements of SUMSQ?

We want to sum as few as possible without losing any degrees of freedoom.

The Pythagoras number de�nes the lower bound on the number of squares which must be summed in order

to obtain every element of SUMSQ.

Using the above properties, we can obtain the elements of ROOT that must be squared and summed to

guarantee that SUMSQ is covered. This set of elements will often have more parameters (unknown coe�cients)

than the original polynomial (the fourth order polynomial). In the example in [8], there were 30 parameters.

The polynomial for the desired curve is obtained by taking the integral of the sum of squared elements of

ROOT (the sum of squared elements is SUMSQ or POS). Recall that SUMSQ or POS are second derivatives

of the polynomial curve. Linear and constant terms were lost when the second derivative was taken. Hence,

additional linear coe�cients and constants need to be added to the polynomial. The coe�cients of the

polynomial curve are solved using the Levenberg-Marquardt (LM) optimization algorithm.
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Optimization is actually performed on the coe�cients of ROOT, not the resulting polynomial curve. We need

to optimize on ROOT because we need to ensure that the reconstructed surface has the desirable properties.

If optimization were performed on the resulting polynomial curve, then the coe�cients may become any

arbitrary value (so long as the resulting surface �ts the data), and they may break the desirable properties

we want to maintain. By optimizing on the ROOT coe�cients, we are guaranteed that POS will still be a

positive polynomial since ROOT is squared. The LM algorithm requires initial coe�cients. These coe�cients

are then modi�ed at every time step. Each time that the coe�cients are changed, POS and the polynomial

curve are generated. The distance of the data points to the polynomial serves as the error, or measure of

goodness of �t. LM takes a steepest descent path to the lowest error using the derivative of the error with

respect to the coe�cients. In summary, the coe�cients of the polynomial curve are solved by repeatedly

changing the coe�cients of ROOT, generating POS, obtaining the polynomial curve, and then calculating the

error and derivative.

Results for the star-shaped family of family of polynomials include a fourth order polynomial �t to an eye

and a sixth order polynomial �t to a convex pentagon. Three dimensional examples include a sixth order

polynomial �t to a cube and a house (nine-sided polyhedron).

The primary drawbacks of this technique for surface reconstruction are that the user must select a base class

of polynomials, and the technique is not scalable. As previously mentioned, selection of a base polynomial

with which to �t the data is not an intuitive process. The technique is not scalable in that each base class

requires a separate derivation. Examples were given for quartic, quintics, sextic (fourth, �fth, sixth degree)

polynomials. However, if a seventh degree polynomial is used as the base family, then ROOT and SUMSQ

must be derived speci�cally for the seventh degree polynomial.

4 Piecewise Algebraic Surfaces

Chandrajit Bajaj and his co-authors approach the problem of reconstruction of algebraic surfaces using a

divide and conquer algorithm, creating piecewise algebraic patches (called A-patches) that combine to form

one surface. The technique groups surface data points into triangles along the contour in 2D or tetrahedrons

along the surface in 3D. No assumption of connectivity between the data points is made. [2] deals with 2D

contours, while [3] deals with 3D surface patches. In both cases, the Bernstein-Bezier (BB) basis is used for

each triangle or tetrahedron. Continuity can be preserved between the patches or curves. In the 2 dimensions,

C2 and C3 are preserved. In the 3 dimensions, C1 (tangent plane) is preserved. Each triangle or tetrahedron

is divided into a series of smaller interior triangles or tetrahedra. The vertices and interior points of the

triangle and the tetrahedron form the control points of the curve or patch. There are nine control points for a

triangle, and twenty for a tetrahedron. The triangle (or tetrahedron) is the convex hull of the control points.

Figure 1 shows the control points of a triangular patch. There are two primary steps in the algorithm: 1)

splitting the data set into triangles or tetrahedrons, and 2) solving for the coe�cients of the control points of

each triangle or tetrahedron. [3] provides a better introduction on BB forms than [2]. In 3 dimensions, any

polynomial in (x; y; z) of degree n can be expressed in BB form as:

f(p) =
X
j�j=n

b�B
n
�(�) (13)

Bn
�(�) is the Bernstein polynomial and b�'s are the coe�cients of the control points.

Bn
�(�) = (

n!

�1!�2!�3!�4!
)(��1

1 �
�2
2 �

�3
3 �

�4
4 ) (14)

�'s are the barycentric coordinates of a data point, p, and can be found using the cartesian coordinates of

p ([xyz1]). �'s are de�ned by the subscript of the control points. We are solving for b�, the coe�cients of the

control points. b� can be found using a series of rules de�ned by the continuity that we wish to preserve and

other conditions such as smooth vertices and smooth edges conditions which constrain certain coe�cients to

be non-zero. The reader should consult [3] for explanations and derivations of the rules. In general, the higher

the continuity we wish to preserve, the fewer the degrees of freedom will be left, since certain control points

will be negative and other positive depending on the continuity requirement. Figure 2 shows a comparison
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between the control point constraints and the continuity condition that is preserved in the 2 dimensional case

for a triangle.
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Fig. 1. Bernstein Bezier Coe�cients of a C0
Cubic Algebraic Curve.
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Fig. 2. Control points for a tetrahedron.

4.1 Generating Triangles for 2D Data

Given a set of 2D data points along the contour of an object, the data points must be grouped into sets.

One cubic curve is generated per group, while preserving continuity (up to C3) between curves (or groups).

The data points are grouped according to the direction of their normal vectors. A circle is divided into k pie

wedges. All consecutive data points of the 2D contour with normal vectors that fall into the same pie wedge

are grouped together into one curve. Each curve exactly interpolates the endpoints and locally computed

derivatives, and approximates the points interior to the curve using least squares. If a curve yields a large

error when compared to the data points, additional cubic curves can be added by locally re�ning single pie

wedges, so that smaller curves are generated. Normal vectors and derivatives are locally computed by a

technique similar to forward di�erencing.

4.2 Generating Tetrahedrons for 3D Data

In the 3D case, we begin with a surface triangulation or mesh. For each face in the triangulation, normal

vectors are calculated. The algorithm then distinguishes between convex and non-convex faces. One tetrahe-

dron is generated for a convex face, and two tetrahedra are generated for non-convex faces. The same is done

for edges.
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4.3 Improved Algorithm for A-Patches

In [4], the same A-patch formulation is used. The major improvements in this paper are the technique

by which the data set is divided into tetrahedrons, simpli�cation of some of the rules that guide creation of

three or four-sided A-patches, and the use of a three dimensional Clough-Tocher scheme that smooths out the

surface by achieving C1 continuity. The algorithm consists of four steps - classi�cation of surface tetrahedra,

computation of approximate signed distance function for each data point, creation of three and four sided

patches for each tetrahedron, and surface smoothing using the Clough-Tocher scheme.

The data set is divided into tetrahedrons using incremental Delaunay triangulation. The incremental

algorithm allows addition of arbitrary data points for re�nement. Alpha shapes is used to �lter out the

simplices to obtain an adequately correct approximation of the object. Then, only the tetrahedra that contain

the surface are kept to be processed. This classi�cation is performed by traversing adjacent tetrahedra, starting

with a tetrahedron that is external to the object. All external tetrahedra are marked as external and queued

for traversal. If an internal tetrahedron is encountered it is marked as internal, but it is not enqueued for

traversal. Once the queue is empty, all external tetrahedra have been marked as external and all boundary

tetrahedra have been marked as internal. All other internal, but non-bounding, tetrahedra have not been

marked or traversed. For each boundary tetrahedron, an A-patche is created using the BB formulation

described in section 4.0.

One important addition in this paper is the use of the Voronoi duality to create a signed-distance function

for the data points. The Voronoi is a dual of the Delaunay triangulation, and the entire region within a

Voronoi cell is closest to the vertex of the Delaunay triangulation that resides in that cell. Given any data

point, the location of the point within the triangulation is found, and its distance to the closest vertex is

computed and used as the signed distance. The signed distance values are used as additional constraints in

solving for the coe�cients of the A-patches.

In the third step, the coe�cients of the patches are solved as a least squares problem that is actually over

constrained. For each tetrahedron, the polynomial must evaluate to zero at every data point in the tetrahedron,

and there is a signed distance constraint associated with every control point. Once coe�cients have been

obtained for all the patches, an error measure is calculated based on the distance between the data point and

the patches. If the error is above the threshold the surface is re�ned by �nding the tetrahedron containing

the largest error. The circumcenter of the selected tetrahedron is then added to the Delaunay triangulation

(the Delaunay triangulation is maintained by the incremental approach). For each new tetrahedron, a patch

is formed and the coe�cients are solved as before.

Once the error is below the threshold, the above incremental re�nement step may end. However, the surface

of patches at this step is not C1 continuous. The �nal step uses the Clough-Tocher scheme to make the patches

C1 continuous. Each tetrahedron is split into twelve tetrahedra. The coe�cients of the twelve patches are

computed based on the value of the function at each vertex of the new patches, the average gradient at the

vertices and the mid-edge points, as well as the continuity constraints imposed between patches. Using these

additional gradient constraints, C1 continuity can be preserved between the patches.

An important aspect of this algorithm is the single-sheeted property that is maintained for every tetra-

hedron. The single-sheeted property prevents the polynomial within a tetrahedron to fold over onto itself.

Figure 3 shows the two types of single-sheeted patches - three and four sided patches - with its corresponding

control points and constraints. The reason for maintaining this property is not explicitly stated in [4]. Cubic

polynomials can fold over itself up to two or three times. Most likely, the single-sheeted property needs to be

maintained to ensure that the least squares �tting is well-behaved. This aspect of the algorithm reveals its

drawback. The primary advantage of using polynomials to reconstruct surfaces is that they can well represent

the curved aspects of the surface such as in
ections in the surface. However, by constraining the polynomial

in each tetrahedron to be single-sheeted, the reconstructed patch is fairly planar.

5 Thin-plate Parametric Surfaces

Terzopoulos present a reconstruction technique to generate three dimensional surfaces from depth images.

Unlike the previous techniques covered in sections 2.0 - 4.0, this work is in the domain of parametric sur-
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Fig. 3. Examples of three and four sided patches.

faces. Terzopoulos' goal was to create a smooth surface that also correctly represents the discontinuities and

boundaries found in range images. These discontinuities are from the silhouette of objects as seen from one

viewpoint. The two key notions of his approach are the use of an energy functional which controls continuity

and accuracy of �t and the use of molecular con�gurations as masks in �nite di�erencing. In [12], he poses the

problem of reconstruction as an inverse problem with in�nitely many feasible solutions. Adding constraints

to �x upon one solution is the process of regularization. Terzopoulos' approach to regularization is the mini-

mization of a functional which measures the smoothness of the surface function and the accuracy of �t to the

data. The energy functional consists of two terms:

E(v) = K(v) + P (v) (15)

v is the reconstructed surface function. K(v) controls the continuity of the surface, and P (v) is a penalty

function for accuracy of �t. K(v) includes a membrane and a thin-plate term:

K(v) =
1

2

Z Z



�(x; y)f�(x; y)(v2xx+ 2v2xy + v2yy) + [1� �(x; y)](v2x+ v2y)g dx dy (16)


 denotes the image region. The �rst term (v2xx + 2v2xy + v2yy) is the thin-plate term and guarantees C1

continuity of the surface. The second term is the membrane term, guaranteeing C0 continuity. A thin-plate

surface acts as a sheet of metal bent over the data points, while a membrane surfaces behaves more similarly to

a balloon stretched over the data points. The thin-plate surface is sti�er and interpolates smoothly between

two data points, while the membrane produces spike-like points where it interpolates the data. The two

functions, � and � , are weighting functions de�ned by the continuity found in the range images and by the

desired local smoothness. As �) 0, the surface becomes locally discontinuous. As � ) 1, the surface becomes

a thin-plate spline, and as � ) 0, the surface becomes a membrane. For intermediate values of � and � , the

surface may characterize a thin-plate surface under tension. Terzopoulos characterizes r as a spatially varying

cohesion factor, and t as a spatially varying tension (or smoothness) factor.

The second term of the energy functional controls the accuracy of �t:

P (v) =
1

2

X
i

�i(v(xi; yi)� dxi;yi)
2 (17)

v(xi; yi) are the reconstructed surface points, and dxi;yi are the data points. The squared term is the

Euclidean distance. � is a weighting factor determined by the con�dence in the measured data point. If

derivatives at each point data is given with the data set, additional sti�ness terms may be added to the to

the penalty function:

P (v) =
1

2

X
i

�di(v(xi; yi)� dxi;yi)
2 +
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1

2

X
i

�pi(vx(xi; yi)� pxi;yi)
2 +

1

2

X
i

�qi(vy(xi; yi)� qxi;yi)
2 (18)

vx(xi; yi) and vy(xi; yi) are the partial derivatives in the x and y directions at the reconstructed surface

point, v(xi; yi). p and q are the known partial derivatives in the x and y directions, respectively. �'s are

the weighting factors for accuracy of position and derivatives. Terzopoulos identify �p and �q as the spring

sti�ness.

Working in the image domain, Terzopoulos approximates the continuous energy functionals using discrete

�nite di�erencing. Finite di�erencing requires a grid of data points, which in this case, is the grid of pixels

in a depth image. Each grid point is called a node. The discrete �rst and second partial derivatives at node

(i; j)are as follows:

vhx =
1

h
(vhi+1;j � vhi;j) (19)

vhxx =
1

h2
(vhi+1;j � 2vhi;j + vhi�1;j) (20)

This approach can be multi-scale in that each grid node may not correspond to a single pixel in the image

but a neighborhood of pixels. h corresponds to the element size. In order to minimize the discrete energy

functional, the spatially varying cohesion and tension factors, � and � , are �xed. The derivative of the energy

with respect to each nodal position is set to zero:

@Kh
��(v

h)

@vhi;j
+
@Ph(vh)

@vhi;j
= 0 (21)

Expanding the continuity and penalty terms in the above equation results in nodal equations which incor-

porate the discrete partial derivatives. From the nodal equations, Terzopoulos develops a series of molecule

masks which encapsulate the depth, orientation, membrane, and thin-plate constraints at each node. Separate

molecules for the constraints are summed together to form one molecule at each node. The molecules take on

di�erent con�gurations depending on the continuity that may be inhibited, corresponding to a boundary dis-

continuity. Each element in the molecule is applied to the image, and the total is set to zero, corresponding to

the minimization of the discrete energy functional. The system of nodal equations is a sparse matrix because

of the locality of the �nite element representation, and it is symmetric. The size of the matrix depends on the

image size which may be quite large. Given these properties, Terzopolous solves the system iteratively using

relaxation methods.

The results show three dimensional surface reconstructions of a sphere, a torus, a light bulb, and terrain

data. Several reconstructed surfaces include discontinuities such as steps and holes.

The primary disadvantage of the �nite di�erencing technique is that the resulting surface is a discrete

representation, de�ned by nodal positions. This is unlike the techniques discussed in the previous sections

in which the surface is a polynomial or patches of polynomials. In addition, the reconstructed surfaces are

topologically constrained to height �elds.

6 Gossard Fairing of Parametric Surfaces

Celniker and Gossard present a three phase, interactive approach to modeling smooth parametric surfaces

in [5]. The three phases consist of de�ning character lines of the shape, applying the deformable surface to

the character lines, and applying loads to deform the surface. This work di�ers from that of Terzopoulos in

that �nite elements and fairing is used rather than �nite di�erencing. The di�erence between �nite elements

and �nite di�erencing is that �nite di�erencing solutions generate positions for a set of vertices that form the

mesh of a surface. Finite elements, on the other hand, result in a set of weights. These weights are applied to

the pre-de�ned basis functions to form the surface. Both techniques minimize an energy functional in order
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to solve for the unknowns. As it turns out, the energy functional used by Celniker and Gossard is similar to

that used by Terzopoulos. Celniker and Gossard develop both two dimensional curve and three dimensional

surface �nite elements. There are two key sections to their work: development of the deformable surface

element and fairing of the surface.

The deformable surface element consists of triangular primitives with C1 continuity between primitives.

Three di�erent shape basis are de�ned for each vertex and one at each edge midpoint, totaling twelve basis

for each triangle primitive. The shape functions are based on those de�ned by Zienkiewicz in The Finite

Element Method, and are in terms of barycentric coordinates of the vertices. The three shape basis for one

vertex of a triangular primitive are repeated below:

'1 = L1 + L12L2 + L12L3 � L1L22 � L1L32

'2 = c3(L12L2 + 0:5L1L2L3)� c2(L12L3 + 0:5L1L2L3)

'3 = �b3(L12L2 + 0:5L1L2L3) + b2(L12L3 + 0:5L1L2L3) (22)

'1, '2, '3 are the shape functions. L1, L2, L3 are the barycentric coordinates of a vertex, and b2, b3, c2, c3
are part of the matrix to transform cartesian coordinates into barycentric coordinates:

2
64 L1
L2
L3

3
75 =

1

24

2
64 a1 b1 c1
a2 b2 c2
a3 b3 c3

3
75
2
64 1

u

v

3
75 (23)

Shape functions for the remaining two vertices of the triangular primitive is generated simply by shifting

all the indices of equation (18) as follows: 1) 2, 2) 3, and 3) 1.

In [5], partial derivatives with respect to the cartesian coordinates (u; v) are derived using barycentric

coordinates. These equations provide a mapping from the cartesian to the barycentric coordinate system that

is later used for fairing of the surface. The energy functional is expressed in (u; v) coordinates. It consists of a

fairness term and a force due to the applied loads on the surface. The fairness term includes a stretch resistance

and a bending resistance. The �rst derivative of the surface is used as the stretch resistance, corresponding to

a membrane. The second derivative of surface is used as the bending resistance, corresponding to a thin-plate.

The applied loads are used to deform the surface. The energy functional is as follows:

Z
f(�11jwuj

2 + 2�12jwujjwvj+ �22jwvj
2 +

�11jwuuj
2 + 2�12jwuvj+ �22jwvvj

2)� 2f � wg du dv (24)

w is the deformable parametric surface. wu, wv, wuu, wuv , wvv are the �rst and second derivatives with

respect to the cartesian coordinates (u; v). �'s and �'s are the membrane and thin-plate weights. f is a vector

of applied loads. As with Terzopoulos' surfaces, C1 continuity is maintained by the thin plate energy term.

The overall algorithm is as follows. An initial set of shapes for each triangle primitive is built from the

characteristic curves supplied by a user. These characteristic curves set certain vertices as constraints which

cannot be deformed. The user may also apply loads to deform the surface. The unknowns to be solved during

each iteration of the system are the positions and tangent vectors of the vertices that are not constrained. To

solve for the unknown positions and tangent vectors, the energy de�ned above must be minimized. Celniker

and Gossard use the Euler di�erential equations. To �nd the minimal energy, the di�erential equation is set

to zero. The resulting relation for the surface balances the internal forces due to stretching and bending and

the external forces due to applied loads:

(
@2(�11wuu)

@u2
+
@2(�12wuv)

@u@v
+
@2(�22wvv)

@v2
)�

(
@(�11wu + �12wv

@u
+
@(�12wu + �22wv

@v
) = f (25)
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Using partial derivatives in terms of barycentric coordinates, the energy functional becomes a system of

equations with the vertex positions and tangent vectors as unknowns. The system matrix is sparse when

there are many triangular primitives since the shape basis are local to each triangle. The solution is found for

energy equal to zero.

Celniker and Gossard's results include examples of interactive modeling. A wine glass is modeled from

simple characteristic curves and applied loads. Examples of varying bending resistance and applying loads to

simple constrained surfaces is also shown.

In [7], Fang and Gossard use the above approach to reconstruct smooth parametric surfaces from a cloud of

points. An extra spring term that controls the accuracy of �t is added to the energy functional. The spring

term is due to the spring force between the data points and the surface. A sti� spring forces the surface to

exactly interpolate the data points, while a 
exible one allows the surface to approximate the data points. The

trade-o� between fairness and accuracy of �t is controlled by a weighting parameter. The energy functional

used for the surface is as follows:

R
f(�11jwuj

2 + 2�12jwujjwvj+ �22jwvj
2 +

�11jwuuj
2 + 2�12jwuvj+ �22jwvvj

2)� 2f �wg du dv +
R
2

P
iKid

2
i (26)

The �rst term remains the same as in equation (2). In this case, f corresponds to the forces acting on the

surface due to the sample points. R is the weighting of the springs' strain energy and controls the trade-o�

between fairness and accuracy. i goes from 1 to the number of data points. Ki is the spring constant for each

spring associated with a data point, and di is the shortest distance between each data point and the surface.

The parametric surface is reconstructed by �rst �tting boundary curves to the boundary points. Repelling

soap bubbles are placed on the surface and allowed to scatter according to the curvature of the surface. A

Delaunay triangulation is then constructed from the centers of the soap bubbles.

Characteristic curves are added which constrain the points on the interior of the surface. The surface is

then remeshed with the additional characteristic curves. The energy functional is minimized iteratively until

convergence is reached. The convergence criterion is based on the desired fairness and accuracy of �t. Details

on the minimization and the soap bubble scattering algorithms are not presented in [7]. Details can be found

in [Fang 92 Visual Computing].

In order to attach the data points to the surface for the spring term, the minimum distance between each

point and the surface must be found. On the �rst iteration, each point is compared against each surface

triangle. As minimization progresses, the assumption is made that the surface shape will change slowly, so

the data points may move only to neighboring polygons, so after the �rst iteration, it is no longer necessary

to compare every point to every polygon in the mesh. Once attachments between data points and the surface

have been established, the forces applied to the surface by each point must be resolved. Within each triangle,

forces are resolved to the vertices by using the distance from each force point to each vertex as the weight.

The force at each vertex is then weighted by area of the triangle in order to normalize the forces across the

entire mesh. Results include �tting a surface to the data points of a car hood.

7 Simplicial Surfaces

Simplicial surfaces are not the main topic of this paper, but are brie
y discussed in this section to complete

the taxonomy of surface reconstruction algorithms. Simplicial surfaces are composed of points, edges, and

triangles, and thus, are piecewise polynomial �ts. A point is a zero dimensional simplex; an edge is a

two dimensional simplex; and a triangle is a three dimensional simplex. The key notion behind simplicial

complexes is the convex combination. An edge is the convex combination of two points, and a triangle is the

convex combination of three points. The reconstruction techniques that generate simplicial surfaces construct

simplicial elements from a collection of data points and then identify which simplicial complexes belong to

the surface. Two such algorithms include Alpha Shapes introduced in [Edel 94] and the Crusts algorithm

presented in [Amen 98]. The primary drawback to simplicial techniques is their reliance on the accuracy
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of the data points. The vertices of the reconstructed surface are a subset of the original data points. Any

noise attached to the data points by the method of data collection will directly translate to the reconstructed

surface. Alpha Shapes and the Crusts algorithm are brie
y discussed in the next two subsections.

7.1 Alpha Shapes

Edelsbrunner's Alpha Shapes technique consists of three steps - triangulation of the point set, selection

of alpha radius, and identi�cation of the simplicial complexes that are to be included in the reconstructed

shape. The point set is triangulated using the Delaunay triangulation algorithm. This technique generates

tetrahedrons, and the resulting shape is the convex hull of the point set. The point set is assumed to be in

general position - no four points on a plane, no �ve points on a sphere. The special feature of a Delaunay

triangulation is that for each tetrahedron, there is no other point, aside from the vertices of the tetrahedron,

inside the circumscribing sphere of the tetrahedron. For each triangle and each edge, there is no other point

inside the circumscribing circle. In the second step of the Alpha Shapes algorithm, the alpha radius used

to carve out the alpha shape is selected. The process of carving out the shape is the �nal identi�cation

step, wherein simplicial elements are either kept or eleminated from the shape. The shape is carved out

by removing edges, triangles, tetrahedrons whose circumscribing sphere is larger than the alpha ball. The

original data points are never removed. At an in�nitely large radius, no simplicial elements are removed, and

the resulting shape is the convex hull. At an in�nitely small radius, only the original point samples are left.

The output of the Alpha Shapes technique is not a manifold surface, but a collection of simplicial complexes

which approximate the 3D shape. The interior of the shape consists of tetrahedrons. The shape boundary

may be considered the surface, though it is highly non-manifold since the shape boundary may contain disjoint

or partially joined edges and triangles. Selection of bounding complexes to obtain a surface is a non-trivial

task.

7.2 Crusts Algorithm

Amenta's Crusts algorithm, also called Voronoi �ltering, consists of four steps - triangulation of the point

set, addition of Voronoi vertices, retriangulation, and identi�cation of the simplicial complexes that are to

be included in the reconstructed surface. Delaunay triangulation is performed to generate the initial mesh.

Next, the vertices of the Voronoi diagram (dual of the Delaunay triangulation), are added to the set of points

to be triangulated. The Voronoi vertices are added because in two dimensions, they approximate the medial

axis of the curve. Delaunay triangulation is applied to the union of the original set of points and the Voronoi

vertices. The resulting triangulation delineates the edges that are on the boundary of the curve from those

that are on the interior because interior edges have a Voronoi vertex as one of their vertices. Hence, the �nal

step is to categorize edges as boundaries if their circumscribing circle is empty of all other sample points and

of Voronoi vertices.

The Crusts algorithm does not perform as well in three dimensions because the Voronoi vertices do not well

approximate the medial axis in three dimensions. Examples are cases in which the Voronoi vertices occur

very close to the surface. To rectify this problem, not all the Voronoi vertices are added to the set to be

retriangulated. Instead, for each sample point, only the two farthest Voronoi vertices of the sample point are

included in the retriangulation. These two points are called the poles of the sample point. After triangulation

of the sample points and selected Voronoi vertices, triangles are categorized as belonging to the surface of the

shape only if all three vertices are sample points and not Voronoi vertices.

Another problem encountered by Amenti include disconnecting closely placed objects. An additional �ltering

step on surface normal vectors is necessary to eliminate abnormally oriented triangles which are often the result

of the connection of two closely placed objects.

Note that one of the primary di�erences in this algorithm compared with the Alpha Shapes technique is

that it reconstructs surfaces and boundaries, whereas Alpha Shapes reconstructs an entire object including

the interior if there are interior data points. Interior data points are often present in medical data, such data

from MRI or CT scans.



14

8 Conclusions

The universe of curve and surface reconstruction algorithms and representations is quite large. This paper

attempts to survey several well-known techniques. The reconstructed curves and surfaces include parametric,

implicit, and simplicial. More emphasis is given to implicit and algebraic representations, as developed by

Taubin, Gotsman, Keren, Bajaj, Xu, Bernardini, and Chen. Representative papers from Terzopolous and

Gossard were discussed as a comparison between �nite di�erencing and �nite elements. Simplicial techniques

developed by Edelsbrunner and Amenti were brie
y discussed.

Each algorithm has strengths and weaknesses for comparison. Global algebraic techniques tend to be elegant

in constructing a single polynomial to represent a complex curve or surface. However, they rely heavily on the

initial choice of the degree of the polynomial, and they are not easily scalable to highly detailed, topologically

complex structures. Piecewise algebraic curves and surfaces attempt to solve the problem of scalability by

dividing the curve or surface into multiple polynomials. As a result, they lose the power of representation

capable of polynomials by constraining each polynomial in the piecewise representation to be fairly planar.

The �nite di�erencing solution introduced by Terzopolous is scalable and simplistic. Finite di�erencing and

energy minimization is reduced to molecular masks which incorporate all the constraints at each element. This

technique is, however, topologically constrained to height �elds. The �nite elements solution as developed

by Gossard is more appropriately used in an interactive modeler, rather than as a reconstruction algorithm

because loads need to be applied to deform the surface and the weighting between thin-plate and membrane

needs adjustment. In [7], the technique is applied to surface reconstruction, but the single example of a car

hood is fairly planar. Unlike many of the other approaches, simplicial techniques do not rely on minimization

to �t a surface representation. However, they can only exactly interpolate the data and are thus sensitive to

any noise present in the data.

Each representation is best suited to speci�c types of data. Simplicial techniques work well with dense data

sets, such as medical data. The �nite di�erencing solution is appropriate to image data which is uniform, dense,

and can be represented by a height �eld. Global algebraic techniques work well for simple curves and surfaces

because more complex surfaces require higher order polynomials, resulting in more coe�cients for which to

solve. The piecewise algebraic approach has the potential to handle topologically complex reconstructions, but

again the data set must be dense since this technique relies on Delaunay triangulations and Voronoi diagrams.
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