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Abstract

A metamorphosis, or morph, describes how a source shape gradually changes
until it takes on the form of a target shape. Morphs are used in CAD (to con-
struct novel shapes from basic primitives) and in motion picture special effects
(to show one character transforming into another). To date, implicit morphing
algorithms have been off-line processes. Source and target shapes and any user-
defined initial conditions (object positions and warps) are provided as input
to these black-box methods. We present an interactive system that constructs
an implicit morph in real-time using the texturing hardware in graphics cards.
Our solution allows a user to interactively modify parameters of the morph (scal-
ing, translation, rotation, and warps) and immediately visualize the resulting
changes in the intermediate shapes. Our approach consists of three elements:
(1) the real-time computation and visualization of transforming shapes, (2) the
ability to immediately see changes reflected in a morph when source and target
shapes are manipulated, and (3) an efficient image-based method for updating
the discrete distance field when affine transformations are applied to source and
target shapes.



0.1 Introduction

A metamorphosis, or morph, describes how a source shape gradually deforms
until it takes on the form of a target shape. Morphs are also called shape trans-
formations, and are used in CAD (to construct novel shapes from basic primi-
tives) and in motion picture special effects (to show one character transforming
into another). Morphs can be represented parametrically or implicitly. In the
parametric representation, points of the source shape gradually move to the final
shape through a linear or other smooth path. Essential to a parametric transfor-
mation is a dense set of point correspondences between the shapes. This dense
set is often generated from a sparse user-defined set. An intermediate shape to
which both the source and target shapes have point correspondence is sometimes
required to generate the dense set of correspondences. In an implicit morph,
an implicit function describes the changing geometry. Intermediate shapes are
acquired by extracting level sets of the function at different time slices. The
primary advantages of implicit methods for shape transformation are that they
can generate a plausible transition between shapes of differing topology and that
they do not require user-defined point correspondences between the source and
target shapes. Some parametric methods can handle changes in topology but do
so with user intervention or by cutting the surface to obtain a common topology.
Many implicit approaches allow additional user-defined constraints (such as the
position of the shapes in relation to each other and warps applied to the shape
prior to morphing) that influence the resulting shape transformation [8, 2].

The primary drawback of implicit methods is that it is difficult to control
the outcome of the transformation – the resulting intermediate shapes in the
sequence. To date, implicit morphing algorithms have been off-line processes.
Source and target shapes and any user-defined initial conditions are provided as
input to these black-box methods. The output is a set of intermediate shapes
generated at different slices in time and rendered for visualization in an anima-
tion. Extracting the intermediate shapes using an iso-surface extraction algo-
rithm such as Marching Cubes [9] is also an off-line, time-consuming step. The
resulting process of modeling morphs consists of trial-and-error wherein the user
modifies the input parameters, generates the morph, and extracts intermediate
shapes for each set of paramters. This approach is highly non-interactive.

The approach that we present significantly reduces the input-output loop by
constructing the implicit shape transformation in real-time using the texturing
hardware in graphics cards. Our solution, detailed in Section 0.3.1, allows a user
to interactively modify parameters of the morph (such as scaling, translation,
rotation, and warps) and immediately visualize the resulting changes in the
intermediate shapes. A 2D example is shown in Figure 1. The interactivity our
framework provides makes the modeling of transformations akin to modeling
geometry. In addition, immediate feedback enables a user to better visualize
and control how topology changes in a transformation sequence. Our approach
consists of three contributions:
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Resulting 2D Shape Transformation:

Figure 1: Top: Midpoint in the 2D morph from a stone bust to a broken half
face. 2D shape changes as the target shape is scaled, translated, and rotated.
Center: Manipulation of the target shape (half face). Bottom: Final morph
from stone bust to half face.

1 Real-time calculation and visualization of implicit morphs.

2 Interactive manipulation of source and target in an implicit morph modeling
system.

3 Image-based method for calculating distance fields that allows for faster up-
dates of the distance field as source and target shapes are manipulated.

As with many image-based approaches, our method can handle complex
shapes of arbitrary topology, subject to resolution. The performance of our
system is dependent on the resolution of the input and improves with additional
texture memory.

The remainder of this paper presents related work in Section 0.2, our new
real-time computation and visualization of 2D and 3D morphing shapes in Sec-
tion 0.3, our framework for interactively applying affine transformations and
non-linear warps to source and target shapes in Section 0.4, the image-based
method to computing distance fields in Section 0.5, and timing results in Sec-
tion 0.6.
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0.2 Related Work

In this section, we briefly review existing methods for constructing and control-
ling implicit shape transformations, and methods that use hardware-accelerated
computations.

0.2.1 Implicit Shape Transformation

A wide variety of approaches to performing shape transformation using implicit
functions have been published in the graphics literature. These methods re-
quire little user-input and are able to handle changes in topology without user
intervention. However, few of these methods offer much user control over the
resulting shape transformation, nor are they interactive. Instead of covering the
many implicit approaches here, we refer the interested reader to [6] where the
authors present a comprehensive survey of morphing algorithms. The interac-
tive framework that we present uses interpolated distance fields to generate the
morph. In [11], Payne and Toga use linear interpolation between signed distance
transforms of source and target shapes to produce smooth morphs. The magni-
tude of the signed distance field indicates the distance from the surface, while
the sign indicates whether a point is inside or outside of the object. At any point
in time, the intermediate shape is the zero level-set of the interpolated distance
function. Their method has become a standard in implicit transformations.

None of the previous implicit shape transformation algorithms generate the
morph in real-time. If a resulting transformation is unsatisfactory, a user must
modify the initial parameters of the transformation and apply the morphing
algorithm once again in an off-line process. To view the intermediate shapes
in an implicit transformation, the intermediate shapes must first be generated
using an iso-surface extraction algorithm such as Marching Cubes [9]. Both
the creation of the implicit morph and the extraction of the iso-surfaces of
intermediate shapes are time-consuming processes. In contrast, the interactive
framework we describe enables a user to manipulate the source and target shapes
of a morph and immediately visualize the changes reflected in the intermediate
shapes without an iso-surface extraction step.

0.2.2 Controlling Shape Transformations

A number of the methods described above enable user control over the shape
transformation by allowing the initial conditions of the source and target shapes
to be changed, or by incorporating deformations into the morph. In [8], Lerios
et al. provide user control of the transformation through user identification
of corresponding features on the source and target shapes. They construct a
warp function from this sparse sampling of corresponding points by weighted
averaging of all corresponding pairs, where the weights are determined by the
inverse squared distance to identified feature points. In [2], the signed distance
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transform is used to perform morphing, similar to the approach of Payne and
Toga. Cohen-Or et al. add user control to this process by allowing spatial
deformations in order to produce better alignment of the objects, and the results
are superior those created using non-deformed objects. The deformation is
defined by a warp function that is applied to the signed distance field. This warp
function consists of a rigid rotational component and an elastic component, and
is controlled by a set of corresponding anchor points between the source and
target shapes in the transformation.

Some implicit morphing methods modify the initial conditions of the source
and target shapes. These initial conditions consist of the position and orienta-
tion of the shapes, and their relative proximity to each other. For example, the
amount of spatial overlap between the shapes often determines the intermedi-
ate shapes in the transformation sequence. Controlling shape transformations
by altering initial conditions gives rise to modeling by trial-and-error in that
the initial conditions are changed iteratively until a desirable transformation se-
quence is obtained. Such a modeling paradigm is non-interactive because, more
often that not, the morphing algorithm is run off-line after the initial conditions
are changed. A user must then examine the results and adjust the input con-
ditions accordingly. We seek a method that reduces this input-output loop so
that as the user rotates, translates, or scales the source and target shapes, these
changes are reflected immediately in the transformation sequence.

0.2.3 Hardware-Accelerated Algorithms

Hardware-accelerated algorithms have become increasingly prevalent as the com-
putational power of the graphics processing unit (GPU) increases faster than
that of general processors. In particular, researchers have taken advantage
of the GPU’s ability to process data in parallel in the form of textures. Re-
cently, hardware algorithms have branched out into two categories – real-time
shading/rendering and real-time computations (geometric and non-geometric).
Our approach to modeling shape transformations involves interactive 2D and
3D visualization and real-time geometric computations. In the area of visual-
ization, speed-ups in volume rendering have been made possible through 3D
texturing [1]. The interactive system we present was inspired by the work of
Westermann et al. in [14] where they develop a method to render volumes in-
teractively. They do so by rendering planes parallel to the image plane that are
clipped against the 3D texture domain. The hardware interpolates the 3D tex-
ture coordinates and blends successive parallel planes that have been textured
with the volumetric data. They also shade the iso-surfaces of volumes without
extracting a polygonal representation. In our approach, we apply their frame-
work to interactively visualize the intermediate shapes in a 3D transformation
without explicitly extracting an iso-surface.

We use the interpolated distance field method of Payne and Toga to produce
a smooth morph. Hence, computation of the distance field for an arbitrarily
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Figure 2: Generating one frame of a shape transformation in real-time using
texture combiners and alpha testing (fragment shaders can be used instead).
The interpolated distance field at each time interval is shown as the shapes’
color. Note that the source shape undergoes a change of topology.

complex shape at interactive frame rates is desirable. Hoff et al. compute
distance fields by rendering a 3D distance mesh that approximates the distance
function [4]. For a point on the 2D plane, the distance on the plane away from
the point can be described by an inverted cone whose apex is centered at the
point. When the cone is rendered using parallel projection, values in the z-
buffer form the distance field. Hoff et al. construct distance meshes for points,
lines, and polygons in 2D, and generalize the approach to 3D. Calculation of a
3D distance field requires processing one slice at a time, and is not obtained at
interactive rates.

More recently, work has appeared on computing distance fields using frag-
ment shaders. Sigg et al. construct signed distances for triangle meshes within
a small band around the surface [12]. Their algorithm samples the distance
field on a regular Cartesian grid, but for each triangle, only grid points inside
the Voronoi cell of the triangle is sampled. A fragment program performs the
nonlinear interpolation to compute the Euclidean distance function and mini-
mization of distance values when several Voronoi polyhedra overlap a sample
point. Although their method generates precise Euclidean distances, a narrow
band is insufficient for implicit morphing, especially if the surface of source and
target shapes are far from each other. Lefohn et al. present a method to com-
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pute level sets on the GPU [7]. They evolve a 3D surface at interactive frame
rates to allow users to guide the evolution. To obtain a distance field over the
entire 2D or 3D domain, the level set must be propagated to the extents of the
domain. Because the number of time steps required is data dependent, it is
unclear that the distance field can be obtained in the same amount of time for
binary shapes of arbitrary complexity. Our image-based method expends the
same amount of time for a given resolution regardless of how complex the shape
may be. In [13], the authors present a method to compute the distance trans-
form by pre-computing an arbitrarily defined distance function from a point and
storing that distance field in a texture. The distance field for a given shape is
then generated by rendering the pre-computed texture centered at every bound-
ary point with the blend mode set to GL MIN. They have not extended their
algorithm to 3D, though this may be possible. The complexity of this algorithm
is also data-dependent, unlike our image-based method.

In Section 0.5, we describe our image-based method for generating distance
fields for binary 2D and 3D shapes of arbitrary complexity. Unlike previously
published work, the complexity of our algorithm is dependent only on the reso-
lution of the shapes and not dependent on the complexity of the shapes them-
selves. We achieve interactive frame rates for calculating complete distance
fields of high resolution 2D (5122) and low resolution 3D (643) objects. In ad-
dition, our image-based method can quickly update the distance field when a
user manipulates the source or target shape in a morph and uncovers regions of
the distance field that have not been computed.

0.3 Real-time Implicit Shape Transformation

Our new approach to modeling implicit shape transformations is an interactive
framework in which users can manipulate the source and target shapes and
immediately see the change in the morph. This approach relies on the texturing
hardware to apply and display the transformation. The premise behind our
approach is that 2D and 3D binary and implicit shapes can be stored as 2D
and 3D textures. We can then manipulate these textures through per-pixel
operations and matrix transforms without extracting any explicit iso-surfaces,
as inspired by Westermann and Ertl in [14].

In the following sections, we describe the key elements of our interactive
system – (1) the real-time computation and visualization of transforming shapes,
(2) the ability to immediately see changes reflected in a morph when source and
target shapes are manipulated, and (3) the real-time computation of discrete
distance fields for shape transformation.

In describing our algorithm, we will use hardware capabilities available in
several generations of graphics cards, including the Nvidia GeForce 4, GeForce
FX 5900, and the GeForce 6800. We show that our approach can be imple-
mented using the hardware capbilities of the older generation of graphics cards
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(GeForce 4) that do not have fragment shading capabilities. This is a ben-
efit of our algorithm because this generation of cards is still quite prevalent
on desktops. We use the following functionalities provided by the GeForce 4:
texture combiners, texture shaders, and register combiners. Texture Combiners
in conjunction with multi-texturing extensions enable textures to be combined
through multiplication, signed and unsigned addition, subtraction, and interpo-
lation. Texture shaders, also called pixel shaders, provide flexibility for mapping
textures by interpreting the color values of one texture as the texture coordi-
nates for another texture. Register combiners enable per-pixel operations such
as addition, subtraction, component-wise multiplication, and dot products of
color images. They can also perform multiplexing based on the high bit of
one of the input alpha channels. In the later generations (GeForce 5900 and
6800), fragment shaders encompass these capabilities while enabling additional
texture units, floating point pbuffers (non-visible frame buffer), and more GPU
progammability in general.

0.3.1 Computing and Visualizing Transformations

A standard method for morphing between two shapes is to cross-dissolve the
distance fields of the two shapes, resulting in a linear interpolation between
source and target distance fields [11]:

d = (1 − t) ∗ dist(A) + t ∗ dist(B); (1)

In the above equation, d is the interpolated distance, t is time, dist(A) is
the signed distance field for source shape A, and dist(B) is the signed distance
field for target shape B. As t is varied, intermediate shapes are extracted where
the interpolated distance field evaluates to zero. At starting time, t = 0, the
resulting shape is completely defined by the source shape A, and at the ending
time, t = 1, the resulting shape is completely defined by the target shape B.

We have implemented this technique for implicit shape transformation by
storing source and target distance fields in the alpha channel of two textures
that are interpolated via a third alpha channel that acts as the interpolant.
The source and target shapes’ color values are stored in the RGB components
of the textures. We use hardware-enabled texture combiners to perform the
interpolation. The mapping of the source and target shapes and time t to the
texture combiner arguments is shown in Figure 2. To display the transforming
shape, the textures are mapped to a quadrilateral that is rendered in real-
time. The parameter t is mapped to the quadrilateral’s alpha value and can
be varied in real-time on every rendering pass. Note that this pipeline can
also be implemented using the multiplexing operator (OR operator) in register
combiners, or using fragment shaders enabled in more recent grahics hardware
(e.g. Nvidia GeForce FX). We use texture combiners in Figure 2 to show how
our approach can implemented in older hardware that does not have fragment
shading capabilities (e.g. Nvidia GeForce 4).
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Figure 3: Top: 2D morph between a paper rabbit and a drawn rabbit without
warping. Center: Corresponding distance field during the morph shows that
undesirable topology changes occur. Bottom: Warping the source and target
shapes eliminates the topology changes.

Although recent graphics hardware supports 32-bit floating point storage and
computation using pbuffers, the displayed frame buffer is constrained to operate
on values in the range [0,1]. Hence in order to display the intermediate slices in
our implicit morph, RGB and alpha values are clamped to [0.0, 1.0]. We retarget
the signed distance field such that negative distances are mapped to alpha values
between [0.0, 0.5), and positive distances are mapped to alpha values between
(0.5, 1.0]. Recall that the intermediate shape is where the interpolated distance
field evaluates to zero, which is now mapped to an alpha value of 0.5. The
intermediate shape is extracted by alpha testing, passing all pixels with an alpha
value equal to 0.5 for a zero level-set. In Figure 2, we show the interior of the
shape, not just the contour, by passing all pixels with an alpha value greater than
or equal to 0.5. The distance field is used as the RGB component for the source
and target textures for illustrative purposes. Normally, the source and target
shapes’ color values are stored in the RGB components of the textures. Color is
thus automatically interpolated as the shape transforms. Figures 1 and 3 are
complex 2D examples, showing color changing during a shape transformation.
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0.3.2 Extending to 3D

In 3D, the iso-surfaces displayed during the morphing are generated using the
approach introduced by Westermann and Ertl [14]. Their technique interactively
displays iso-surfaces without explicitly extracting an iso-surface. This is done
using 3D texture mapping and pixel transfer operations to render the iso-surface
on a per-pixel basis. Thus, only the pixels that are closer to the viewer (i.e., that
pass the z-buffer test) and whose values are above the iso-value are rendered.

The two 3D textures used during the morphing process store the distance
fields in their alpha component and the normals (computed using the distance
fields) in their RGB components. Register combiners or fragment shaders are
used to compute the dot products between each voxel normal and the lighting
directions (for both textures), followed by the interpolation of the two 3D tex-
tures using using the method we previously described for 2D shapes. Both the
normals and distance fields are interpolated. After interpolation, a multiplex
operation is performed to pass only voxels whose interpolated values are greater
than 0.5. Figure 4 shows a 3D shape transformation from a zebra to an elephant
Intermediate shapes were not precomputed in these visualizations.

0.4 Manipulating the Shape Transformation

The intermediate shapes in an implicit shape transformation may be unsatisfac-
tory. For example, undesirable topology changes may occur resulting in extra
components forming and disappearing. In the top and center rows of Figure 3
one ear of the paper rabbit disconnects and then reconnects to form an ear of
the drawn rabbit. The second ear of the drawn rabbit is an extra component
that forms and connects to the rabbit’s head. A 3D example is shown in Fig-
ure 4 where the legs of the zebra disconnect into separate components during
the transition to the elephant.

When the intermediate shapes are unsatisfactory, the transformation can
be modified by changing the initial conditions of the source and target shapes.
Initial conditions include the size, position and orientation of the shapes, their
relative proximity to each other, and any non-linear warps that are applied to
the source and target shapes for better alignment. In our framework, a user may
modify these initial conditions and immediately visualize the changes reflected
in the morph. In this section, we describe affine and non-linear transformations
that may be applied to source and target shapes in our interactive framework.

Many implicit methods for shape transformation include a user-defined step
for alignment of the source and target shapes through translation, rotation, and
scaling. In Figure 1, we show the effects of the shape transformation as the
target shape is scaled, translated, and rotated in real-time. Figure 4 shows a
3D shape transformation from a zebra to an elephant with and without spatial
alignment. An optimal alignment to line-up the legs of the source and target
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Figure 4: 3D implicit morph computed in real-time. Source and target volumes
are 2563. Top: Original misalignment of zebra and elephant (see Figure 5)
causes extra components to form during the morph. Bottom: Better alignment
of source and target eliminates unwanted topology change during the morph.
The speckle present on the target elephant is due to undersampling of the flat
ears when the volumetric model was generated and is not a side-effect of our
implicit morph.

shapes was made possible by showing both shapes in one visualization, with one
shape in a different color (see Figure 5). As in the 2D example, the intermediate
slices of the morph change in realtime as the alignment is modified by the user.

Techniques for non-linear warping [2] can be applied to source and target
shapes in our framework via pixel (or dependent) textures in a similar manner
as in [15, 5]. The shape and distance field textures are dependent upon another
texture in that they are texture mapped according to the coordinates stored in
the third texture. The texture coordinates stored in a pixel texture need not be
linearly related and can instead store non-linear warps. In our system, users can
define a thin-plate warping function by specifying corresponding features points
between source and target shapes, as described in [2]. Pixel textures describing
the warps are generated by evaluating the warping function for each pixel, or
voxel, and storing the warped texture coordinates in the pixel texture. When
the shape textures and corresponding distance fields are mapped to polygons for
rendering the morph, they are first warped by the pixel texture. Warped texture
coordinates that index locations outside of where the distance field exists are
clamped to the boundaries. If regions are uncovered where the distance field
does not exist, the warped distance field can be updated in one pass using the
image-based approach we describe next. An example of 2D warping is shown in
Figure 3. Examples of warped 3D shapes is shown in Figure 6.

An even more direct mechanism for manipulating the implicit shape trans-
formation is to edit source and target shapes using standard techniques found
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(a) (b)

Figure 5: (a) Original misalignment of zebra and elephant (pink). (b) Better
alignment of source and target.

in 2D paint and 3D sculpting programs. Our framework is capable of incor-
porating these changes into the shape transformation through updates on the
distance field. Inclusion of such operators in our framework has been left to
future work.

0.5 Computing Distance Fields on the GPU

In order to immediately see the effects an edit imposes on the shape transforma-
tion, distance fields used to construct the implicit morphs must be calculated at
interactive frame rates. In the following section, we show how this calculation
can be performd at interactive frame rates for 2D shapes of up 5122 and and
3D shapes of 643 using a simpler form of the distance field. To enable inter-
activity when manipulating larger 2D and 3D shapes, we use an image-based
method that enables updates to be made to the distance field in less time than
recalculating the entire distance field in software. For large 2D and 3D shapes,
our system calculates an initial distance field when the source and target shapes
are loaded and then achieves interactive frame rates while the source or target
shape is manipulated by updating the distance field rather than recalculating
it.

Distance fields have primarily been computed in software. Recent work
in calculating distance fields using graphics hardware have been for polygonal
models [4, 12], are data-dependent methods [7, 13], or generate only a narrow-
band of distance values around the surface [12]. For these reasons, these methods
cannot be applied to arbitrarily complex implicit shapes. We describe a new
method to handle discrete shapes that are represented by a binary image or
volume. We use the convention that 0 indicates existence of the object, and 1
is free space. Note that this algorithm can be applied to any implicit shape as
long as the shape is first sampled into a discrete binary representation. Once
we have a discrete representation for the shape, it can be loaded as a texture
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(a) (b)

Figure 6: Warping of source and target volumes (2563). The forehead of the
generic head (top) compresses to match Spock’s head, while Spock’s jaw (bot-
tom) elongates to match the generic head.

into the graphics hardware.
Standard methods for computing a discrete distance field for an object rep-

resented as a binary image are scan algorithms, such as Danielsson’s Four Point
Sequential Euclidean Distance (4SED) algorithm [3]. A good review of scan al-
gorithms can be found in [10]. Scan algorithms operate by propagating distance
values or vectors across the binary image in raster-scan order or by ordered prop-
agation from shape contours. For example, the 4SED algorithm computes the
distance transform for each pixel pi,j of the image by adding “1” distance unit
to the pixels to the right pi+1,j , the left pi−1,j , above pi,j+1 and below pi,j−1 in
two passes. The Euclidean distance di,j from pixel pi,j to the shape boundary
is the minimum of the distances di+1,j + 1, di−1,j + 1, di,j+1 + 1, and di,j−1 + 1.
Complete forward and complete backward passes along the entire width and
height of the image are necessary. In order to obtain a signed distance, the
binary shape is inverted, and the same passes are applied to the inverted shape.

The first hardware-enabled approach we describe is a multi-pass algorithm
that also traverses the image in several passes in a similar manner to scan al-
gorithms for computing the distance field. Instead of propagating single values
from one pixel to the next in raster-scan order, however, an entire image can be
propagated at once by shifting the texture storing the binary shape by one pixel

12



in the scan direction (left, right, up, or down). In each pass of this initial algo-
rithm, the binary shape image is shifted one pixel in one of the four directions;
each pixel of the shifted image is incremented by a distance value of “1”; and
the results are compared to the image from the last pass. For each pixel, the
minimum value between the two images (current pass and last pass) is kept and
stored for the next pass. As with Danielsson’s algorithm, complete forward and
complete backward passes along the entire width and height of the image are
required, and the same number of scans must be applied to the inverted binary
image in order to obtain a signed distance. Figure 7 is a diagram of one pass of
the algorithm in which the shape image is shifted to the right. The algorithm
can be implemented using pixel textures and register combiners in older graph-
ics cards, or using fragment shaders in more recent cards (e.g. Nvidia GeForce
FX). With fragment shading, we increment and compare each pixel with its
left, right, top, and bottom neighbors in a fragment program that is executed
for every pixel in the frame buffer. Because we are shifting and incrementing
whole images, our hardware-enabled method for calculating the distance field is
image-based. Later, in Section 0.5.1, we further exploit the parallelism of the
graphics hardware to make our image-based algorithm more efficient.

Note that the distance field that we generate is not Euclidean (L2 norm),
but rather, it is the min-norm defined as:

dist(p1, p2) = mini|p1
i − p2

i | i = 1, 2, ..., n (2)

In the above equation dist(p1, p2) is the distance between two points p1 and
p2; i goes from 1 to dimension n; n = 2 for 2D images; and n = 3 for 3D
volumes. We believe that the min-norm is sufficiently accurate for visualizing
shape transformations.

+"1" Luminance

Shifted Texture Coordinates

Shape Texture From 
  Previous Iteration
(source shape shown)

Shifted Texture

Min (Source, Shifted) After 150 Passes

Figure 7: One pass of the distance field calculation in hardware. The texture
shift (implemented using pixel textures or fragment shaders) and added lumi-
nance have been exagerated to show the difference between the input and shifted
images. Far right: distance field generated after 150 passes.

A single pass of our hardware implementation is a shift of the entire shape
image to the right, left, up, or down of one pixel. The total number of passes in
our initial approach is 2∗width+2∗height for an unsigned distance (double that
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(by 1/2 image width)

    Shifted Texture
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    Source Shape

Shifted Texture
  Coordinates

Min (Source, Shifted) Min (Source, Shifted)

......

After 9 Passes

+"1"

Shifted Texture
  Coordinates

Figure 8: Two passes of our improved method to calculate distance fields using
graphics hardware. After the second pass, the computed distance field contains
more distance values than two passes of our earlier algorithm. Only 9 shifts are
needed to generate the forward horizontal pass of the distance field.

for a signed distance). In order to obtain a signed distance, the binary shape
image is inverted, and the same number of passes is applied to the inverted
image. For a 2562 image, a max of 2048 passes are required to generate a signed
distance function. Using either pixel textures in older graphics cards or fragment
shaders in newer cards, left and right horizontal scans can be combined into one
scan (and both vertical scans can be combined into one), reducing the number
of passes by half to 1024.

In order to compare the image of the current pass with the image from
the last pass, the last pass must be stored in a texture, requiring a copy (or
rendering) to texture memory. Rendering to a texture remains expensive in
current graphics hardware, and is the bottleneck in our initial hardware-enabled
approach. An algorithm requiring 1024 renders to texture, such as ours, cannot
achieve interactivity. We have found the average time to be 1.0 seconds for
images of 2562 resolution, and 3.9 seconds for images of 5122 resolution. Our
solution is to reduce the number passes (and thus, the number of renders to
texture) as described next.

0.5.1 Achieving Real-time Distance Field Updates

We can reduce the number of passes by further exploiting the parallelism of
the graphics hardware in processing fragments. In a distance field, the distance
stored in a pixel that is half of an image width away from the shape boundary
should be equal to half the maximum distance (w/2, where w is the image
width). In our implementation, the maximum distance is equal to the image
width or height. Similarly, if a pixel is half of an image width away from another
pixel that has a distance value of d, then our pixel of interest should take on a
value of d + w/2. Hence, for each pixel pi that is w/2 away from some other
pixel with a distance value of di, the distance value for pi is:
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dist(pi) = di + w/2 (3)

If we have half of the distance field already computed up to a distance of
w/2, we can shift the distance field by w/2, increment the distance values by
w/2, and combine this with our original, unshifted, unmodified distance field.
The shifted and modified distance field spans from w/2 to w. Combining the
two half-width distance fields would result in a complete distance field. The key
difference is that we have now done only w/2 + 1 shifts rather than w shifts.
Since each shift is a single pass in our hardware-enabled approach, this is a
significant saving.

This shift, increment, and combine procedure can be applied to distance
fields that have values up to w/4 to generate a distance field with values up to
w/2. The procedure can also be applied to distance fields that have values up to
w/8 to generate a distance field with values up to w/4. We can continue to apply
this technique to halved distance fields until we are generating distances that
are just one pixel away from the shape boundary and take on a value of 1/w.
By successively combining smaller distance fields to form larger ones, we can
complete one full horizontal pass (spanning the entire width) in log2w shifts as
opposed to w shifts as required by our first approach. We still need to complete
one horizontal pass (that combines left and right shifts) and one vertical pass
(that combines up and down shifts) to generate an unsigned distance field. The
total number of shifts is log2w + log2h as opposed to w + h. For a 2562 image,
only 16 passes are needed with our new technique for the unsigned distance
(32 passes for the signed distance). Our new hardware-enabled distance field
calculation can now be achieved at interactive frame rates due to the savings in
the number of required passes and textures to render. We have found the average
time to calculate a signed distance field to be 0.1 seconds (10 Hz) for images of
2562 resolution, and 0.35 seconds (2.9 Hz) for images of 5122 resolution (with
9 shifts per direction). The frame rates we obtain were on the Nvidia GeForce
FX 5900 graphics card. Figure 8 is a diagram of this more efficient multi-pass
algorithm.

The primary advantage of our image-based approach to computing the min-
norm is not the speed in computing a full distance field, however, because a
software implementation of the min-norm can compute the full distance field in
less time (see Table 1). The key advantage of our image-based approach is that
it can quickly update a partially computed distance field. When an affine trans-
formation or non-linear warp is applied to the source or target shapes, regions
may be uncovered where the distance field does not exist, as shown in Figure 9.
The distance field is then updated by shifting and incrementing the current dis-
tance field by some power of 2 such that the updated distances propagate across
the uncovered region. We have found that only a single shift and increment pass
is needed to fill in uncovered regions as a user translates or rotates the source or
target shapes. A single pass of our image-based approach to updating the dis-
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tance field is faster than recomputing the entire distance field in software. Since
the software algorithm cannot determine which parts of the distance field needs
to be updated without first traversing those regions, complete raster-scans are
required in the software implementation even though only part of the distance
field needs to be computed. Note that shifting and incrementing the signed dis-
tance field will not produce correct results because distance values need to be
incremented in regions outside of the shape and decremented in regions inside
the shape. Hence, it is necessary to store and update the two regions of the
unsigned distance field separately prior to combining them.

Rotated Distance Field Updated Distance Field

Figure 9: Left: Rotating the shape after the distance field has been computed
uncovers regions where the distance field does not exist. Right: The distance
field is updated after an affine transformation using our image-based approach.

Updating the discrete distance field in hardware is essential to our inter-
active shape transformation system because this allows the source and target
shape images and corresponding distance fields to remain in texture memory as
they are being modified or calculated. A software distance field implementation
would require updating the distance field in main memory every time a user
modifies the shape image. The updated distance field would then need to be
loaded back into texture memory.

0.5.2 Extending to 3D Distance Fields

Extending our above algorithm to 3D shapes requires calculating the 2D dis-
tance function for each slice along the depth axis in the volume. Several slices
cannot be computed at once in the same manner that several shifts to the
left/right/above/below were computed in the 2D distance field. The number of
passes required along the depth axis is equal to the depth d, not log2d, because
rendering intermediate results to textures can only be applied to 2D textures
(glCopyTexSubImage applies only to 2D, not 3D, textures). Simply applying the
2D distance field calculation to each slice in the volume would not give an accu-
rate distance field along the depth axis. Instead, we calculate the 3D distance
field by first rotating the volume about the vertical axis by 90 degrees so that
the width is now equal to d. Distance values are then computed horizontally
for each slice of the volume as previously described, requiring log2d passes for
each slice. There are now w slices due to the 90 degree rotation. The result-
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ing distance values, when rotated back by -90 degrees, are distances along the
depth axis. The unsigned 3D distance field is generated by computing distance
values along the width and height of the volume for each unrotated slice along
the depth axis as described in the previous section. The full pipeline is shown
in Figure 10. The total number of rendering passes required for computing the
unsigned 3D distance field is: d ∗ (log2w + log2h) + w ∗ (log2d). For a signed
distance field, the shape is inverted, the same number of passes are applied, and
negative and positive distance fields are combined. For a volume of 643, this
amounts to 1152 passes. We have found the average time to calculate a signed
distance field to be 0.5 seconds (2 Hz) for volumes of 643 resolution
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Figure 10: The 3D shape is rotated for calculating the distance along the depth,
and rotated back for distance along the width and height.

0.6 Results

Table 1 shows timing results for different resolutions of 2D and 3D shapes using
the Nvidia GeForce FX 5900. We have recorded the time for computing and
rendering morphs using texturing hardware which achieves real-time frame rates
for all resolutions. As expected, the timing shows that updating the distance
field takes less time than the initial calculation. Dependent textures are created
for warping. Note that the time recorded for creating dependent textures is
the evaluation time for a warp function consisting of one pair of corresponding
points between the shapes. The actual time is highly dependent on the type of
warp (thin-plate or Gaussian) and number of corresponding points between the
source and target shapes.

0.7 Conclusions

We have presented an interactive technique to construct implicit shape transfor-
mations using texturing hardware. We have also discussed the implementation
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Dim. Software Hardware Compute & Render Distance Dependent
Distance Distance Morph Update Texture

2562 0.016 0.078 < 0.01 0.016 0.18

5122 0.062 0.36 < 0.01 0.062 0.60

643 0.172 0.51 < 0.01 0.164 0.03

1283 1.89 3.46 < 0.01 1.046 0.22

2563 17.45 29.21 0.02 7.75 1.90

Table 1: Timing Results (in secs.)

of our method on older and newer generations of graphics cards with differ-
ing capabilities. Our approach allows users to interactively manipulate source
and target shapes as the shape transformation is computed and displayed. The
method relies on a new image-based technique to update discrete distance fields
that is faster than a software implementation. As with many image-based ap-
proaches, ours can handle complex shapes of arbitrary complexity. Because our
framework creates an implicit shape transformation, it is capable of generat-
ing plausible transitions between shapes of differing topology. The immediate
feedback helps a user to visualize and control how the shape morphs and how
topology changes in a transformation sequence.
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