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Abstract

We present a new method of surface reconstruction that generates smooth and seamless models

from sparse, noisy, non-uniform, and low resolution range data. Data acquisition techniques from

computer vision, such as stereo range images and space carving, produce 3D point sets that are

imprecise and non-uniform when compared to laser or optical range scanners. Traditional recon-

struction algorithms designed for dense and precise data cannot be used on vision-based data sets.

Our method constructs a 3D implicit surface, formulated as a summation of weighted radial basis

functions. We achieve three primary advantages over existing algorithms: (1) the implicit functions

we construct estimate the surface well in regions where there is little data; (2) the reconstructed

surface is insensitive to noise in data acquisition because we can allow the surface to approximate,

rather than exactly interpolate, the data; and (3) the reconstructed surface is locally detailed, yet

globally smooth, because we use radial basis functions that achieve multiple orders of smoothness.

Index terms: regularization, surface �tting, implicit functions, noisy range data

I. Introduction

The computer vision community has developed numerous methods of acquiring three di-

mensional data from images. Some of these techniques include shape from shading, depth

approximation from a pair of stereo images, and volumetric reconstruction from images at

multiple viewpoints. The advantage of these techniques is that they use cameras, which are

inexpensive resources when compared to laser and optical scanners. Because of the a�ord-

ability of cameras, these vision-based techniques have the potential to enable the creation of

digital models by home computer users who may not have professional CAD training. The

data that is obtained is, however, comparatively more noisy, more non-uniform, and more
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sparse than data from laser and optical scanners. Most reconstruction methods that work

with such data create a polygonal model from the three dimensional data. Techniques that

are used to perform the reconstruction include region growing techniques, algorithms based

on computational geometry, and algebraic �tting methods. In many of these methods, noise

from data acquisition becomes quite apparent in the resulting model. In the case of volumes

carved from multiple images, the reconstructed models remain in the volumetric domain,

and thus have artifacts due to the voxel discretization.

Currently, models in popular use in the entertainment industry (animation and gaming

applications), video and image editing, and computer graphics research come from dense

laser scans or medical scans, not from vision-based techniques. We believe that this is not

because vision-based techniques generate poor three dimensional data, but rather, that the

reconstruction of vision-based data has not generated detailed or practical representations.

Some of the more popular surface reconstruction approaches are based on region growing,

computational geometry, and algebraic data �tting. Methods based on computational geom-

etry assume precise and dense data in that they generate polygonal models whose vertices

consist of the original data points. Similarly, region growing techniques rely on dense data to

de�ne 3D structure. Approaches based on algebraic data �tting are limited in their ability to

reconstruct complex models of arbitrary topology. Our approach addresses the limitations

of these surface reconstruction methods by generating approximating surfaces and by using

radial basis functions centered at data points to overcome the complexity limitation.

The new approach presented in this paper constructs a 3D implicit function from range

data. We use an implicit representation because implicit functions can smoothly interpolate

the surface where there is little or no data, the surfaces are inherently manifold, compact,

smooth and seamless, and they can either approximate or interpolate the data. Implicit

surfaces are well-suited for operations such as collision detection, morphing, blending, and



3

modeling with constructive solid geometry because they are formulated as a single analytical

function, as opposed to a piecewise representation such as a polygonal model. Implicit

surfaces can also accurately model soft and organic objects and can easily be converted to

a polygonal model by isosurface extraction. In e�ect, our approach retains the exibility of

an analytical representation but can also produce the widely used polygonal representation.

We construct an implicit surface from the data set using three dimensional regularization.

This approach is based on the variational implicit surfaces of Turk and O'Brien [28]. Our

implicit function consists of a summation of weighted radial basis functions that are placed

at surface, interior, and exterior constraint points de�ned by the data set. The weights of

the basis functions are determined by solving a linear system of equations. If so desired, we

can approximate the data set by relaxing the linear system. The ability to choose whether to

approximate or interpolate the data is especially advantageous in the presence of noise. Sur-

face detail and smoothness is obtained by using radial basis functions that achieve multiple

orders of smoothness.

Our main contributions are: (1) introducing the use of variational implicit surfaces for

surface reconstruction from vision-based range data, (2) the application of a new radial

basis function which achieves multiple orders of smoothness, (3) enhancement of �ne detail

and sharp features that are often smoothed-over by the variational implicit surfaces, (4)

construction of approximating, rather than interpolating surfaces to overcome noisy data,

and (5) development of validation techniques to guide the selection of parameters that control

the smoothness of the surface versus the �tness to the data.

The remainder of the paper is organized as follows: in Section II, we review related work

in surface reconstruction. In Section III, we show how a priori knowledge about the vision-

based data set is used in reconstructing the surface. We describe the variational implicit

surface representation in Section IV. In Section V, we describe our approach to constructing
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approximating surfaces. In Section VI, we introduce a radial basis function that achieves

multiple orders of smoothness. Results from synthetic range images and from real space

carved data sets are shown in Section VII.

II. Related Work

The large number of published methods for performing surface reconstruction makes it

nearly impossible to perform a comprehensive survey. Instead, we describe some of the more

popular approaches, with a bias towards those more closely related to our own approach. The

methods we describe include region growing, algorithms based on computational geometry,

algebraic �tting, and surface regularization. Some of these methods fail in the presence of

noisy data, while others are computationally limited to reconstructing simple models.

Examples of region growing techniques include Hoppe's work on surface reconstruction [13]

and Lee, Tang and Medioni's work on tensor voting [17,23]. In Hoppe's approach, a plane is

�tted to a neighborhood around each data point, providing an estimate of the surface normal

for the point. Hoppe constructs a graph that connects neighboring points using arcs weighted

by the similarity between the surface normals. The surface normals are then propagated by

traversing the graph as a minimal spanning tree. Lee and Medioni's tensor voting method

is similar in that neighboring points are used to estimate the orientations of data points.

The tensor is the covariance matrix of the normal vectors of a neighborhood of points. Each

data point votes for the orientation of other points in its neighborhood using its tensor �eld.

In [23], the surface is reconstructed by growing planar, edge, and point features until they

encounter neighboring features. Both methods described above are sensitive to noise in the

data because they rely on good estimates for the normal vector at each data point.

Several algorithms based on computational geometry construct a collection of simplexes

that form the shape or surface from a set of unorganized points. These methods exactly

interpolate the data | the vertices of the simplexes consist of the given data points. A con-
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sequence of this is that noise and aliasing in the data become embedded in the reconstructed

surface. Of such methods, three of the most successful are Alpha Shapes [10], the Crust

algorithm [1], and the Ball-Pivoting algorithm [4]. In Alpha shapes, the shape is carved out

by removing simplexes of the Delaunay triangulation of the point set. A simplex is removed

if its circumscribing sphere is larger than the alpha ball. In the Crust algorithm, Delaunay

triangulation is performed on the original set of points along with Voronoi vertices that

approximate the medial axis of the shape. The resulting triangulation distinguishes trian-

gles that are part of the object surface from those that are on the interior because interior

triangles have a Voronoi vertex as one of their vertices. Both the Alpha Shapes and Crust

algorithms need no other information than the locations of the data points and perform well

on dense and precise data sets. The object model that these approaches generate, however,

consists of simplexes which occur close to the surface. The collection of simplexes is not

a manifold surface, and extraction of such a surface is a non-trivial post-processing task.

The Ball-Pivoting algorithm is a related method that avoids non-manifold constructions by

growing a mesh from an initial seed triangle that is correctly oriented. Starting with the

seed triangle, a ball of speci�ed radius is pivoted across edges of each triangle bounding the

growing mesh. If the pivoted ball hits vertices that are not yet part of the mesh, a new

triangle is instantiated and added to the growing mesh. In Figure 2 (page 13, two left pan-

els) , the Crust algorithm is applied to real range data obtained from the generalized voxel

coloring method of [7]. Although, the general shape of the toy dinosaur is recognizable, the

surface is rough due to the noisy nature of the real range data.

Many algebraic methods avoid creating noisy surfaces by �tting a smooth function to the

data points, and by not requiring that the function pass through all data points. The recon-

structed surface may consist of a single global function or many functions that are pieced

together. Two examples of reconstruction by global algebraic �tting are the works of Taubin
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[24, 25], and Gotsman and Keren [14]. Taubin �ts a polynomial implicit function to a point

set by minimizing the distance between the point set and the implicit surface. He points

out that calculating Euclidean distances for implicit functions requires an iterative process

because implicit functions are not often Euclidean distance functions. In [24], Taubin devel-

ops a �rst order approximation of the Euclidean distance and improves the approximation in

[25]. Gotsman and Keren create parameterized families of polynomials that satisfy desirable

properties, such as �tness to the data or continuity preservation. Such a family must be

large so that it can include as many functions as possible. This technique leads to an over-

representation of the subset, in that the resulting polynomial will often have more coeÆ-

cients for which to solve than the simpler polynomials included in the subset, thus requiring

additional computation. The primary limitation of global algebraic methods is their inability

to reconstruct complex models. These methods become too computationally intensive for

the high degree polynomials that are necessary to represent complex objects.

In [3], Bajaj overcomes the complexity limitation by constructing piecewise polynomial

patches (called A-patches) that combine to form one surface. Bajaj uses Delaunay triangu-

lation to divide the point set into groups delineated by tetrahedrons. An A-patch is formed

by �tting a Bernstein polynomial to the data points within each tetrahedron. By con-

structing a piecewise surface, Bajaj's approach loses the compact characteristic of a global

representation, and operations such as collision detection, morphing, blending, and modeling

with constructive solid geometry become more diÆcult to perform since the representation

is no longer a single analytical function.

Examples of algebraic methods developed earlier in the vision community that provide

both smooth global �tting and accurate local re�nement include the works of Terzopoulos

and Metaxas on deformable superquadrics [27] and Pentland and Sclaro� on generalized

implicit functions [19,20]. Both methods use superquadric ellipsoids as the global shape and
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add local deformations to �t the data points. Terzopoulos and Metaxas separate the re-

constructed model into global parameters de�ned by the superquadric coeÆcients, and local

displacements de�ned as a linear combination of basis functions. The global and local de-

formation parameters are solved using dynamics. Pentland and Sclaro� de�ne a generalized

implicit model that consists of a superquadric ellipsoid, a modal deformation matrix that acts

on the ellipsoid, and a displacement map that pushes the implicit surface along the surface

normal towards data points. The modal deformation parameters are found by iteratively

�nding the minimum RMS error to the data points. The residual error after the deformation

parameters have been found are incorporated into a displacement map that may exactly in-

terpolate or just approximate the data. As with most of the algebraic methods, the primary

drawback of these techniques is their inability to handle arbitrary topology. Complex models

are constructed by combining multiple superquadrics. Terzopoulos and Metaxas' example of

reconstructing a humanoid doll consists of separate deformable superquadrics for the torso,

head, arms, and legs.

Our approach is similar to global algebraic �tting in that we construct one global implicit

function. Our method cannot be categorized as algebraic �tting, however, because the im-

plicit function we construct is not a polynomial. Instead, it is a summation of non-polynomial

basis functions whose domain is a scalar value obtained from the distance between sample

points. Previous work that is most closely related to the work we present in this paper

are methods based on regularization. Surface reconstruction from a point set is an ill-posed

inverse problem because there are in�nitely many surfaces which may pass through a given

set of points. Surface regularization restricts the class of permissible surfaces to those which

minimize a selected energy functional. The work of [5] and [26] are examples of regular-

ization applied to height-�eld surfaces, and [11] is an example of regularization applied to

parametric curves. Terzopoulos pioneered �nite-di�erencing techniques to compute approx-
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imate derivatives used in minimizing the thin-plate energy functional of a height-�eld. He

developed computational molecules from the discrete formulations of the partial derivatives.

Regularization is performed by iterating between coarse and �ne levels in a multi-resolution

hierarchy. Boult and Kender compare classes of permissible functions and discuss the use of

basis functions to minimize the energy functional associated with each class. Using synthetic

data, they show examples of overshooting surfaces that are often encountered in surface

regularization. As exempli�ed by these two methods, many approaches based on surface

regularization are restricted to height �elds because surface derivatives are required in the

process of regularization. Derivatives with respect to the major axis are naturally de�ned

for height �elds.

In [11], Fang and Gossard reconstruct piecewise continuous parametric curves. The ad-

vantage of parametric curves and surfaces over height-�elds is the ability to represent closed

curves and surfaces. Each curve in their piecewise reconstruction minimizes a combination

of �rst, second, and third order energies. Unlike the examples above, the derivative of the

curve in this method is evaluated with respect to the parametric variable. Each curve is

formulated as a summation of weighted basis functions. Fang and Gossard show examples

using Hermite basis. The approach we present in this paper has similar elements. We also

use basis functions to reconstruct a closed surface which minimizes a combination of �rst,

second, and third order energies.

We di�er from the previous work in that we reconstruct complex 3D objects using a single

implicit function; we perform volumetric rather than surface regularization; and we use

energy-minimizing basis functions as primitives.

III. Constraint Specification

In this section, we introduce the a priori knowledge we have of vision-based data sets and

how this information can be used to reconstruct a surface. Later we will formalize our surface
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Fig. 1. The left panel shows the free space carved out by rays projecting from the camera to the object
surface. The right panel shows surface (*) and exterior (-) constraints de�ned by the free space.

reconstruction algorithm and discuss its relationship to volumetric regularization.

The computer vision community has developed many methods to acquire 3D positional

information from photographic images taken by cameras. The goal of all these methods is

to determine a collection of 3D points that lie on a given object's surface. When such a

collection of points is acquired using cameras, the camera position and direction provides

additional information that can be used for surface reconstruction. In particular, if a point

that can be seen from a particular camera is found to be on the surface of an object, there are

no surfaces between the camera and the point. We call the region between the camera and

the surface point free space. This is shown in the left panel in Figure 1. Some space carving

approaches to surface reconstruction make use of this information [8] as well. We can use this

a priori knowledge about the object surface locations and the free space to de�ne constraints

that lie on or outside of the object (shown in the right panel in Figure 1). The exterior

constraints are those locations where we want our implicit function to be negative, and the

surface constraints are where the implicit function should evaluate to zero. Later, we will

give more details on how these constraints are used in our surface reconstruction algorithm.

Note that we do not have any knowledge about the interior space behind the surface locations

with respect to one camera position and direction. However, if we have images and surface

locations from viewpoints surrounding the object, the interior of the object is known by

virtue of surface enclosure. Hence, we can completely de�ne the existence space - surface,
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exterior, and interior - of the object.

In this paper we demonstrate our reconstruction technique with models from both synthetic

range images and real data from voxel coloring [21,7]. We use this data to de�ne interior,

exterior, and surface constraints as described above in order to guide the construction of an

implicit function. In the case of voxel coloring, the initial data sets are dense. For example,

the toy dinosaur used in the Crust reconstruction shown in Figure 2 consists of 19,641

surface voxels. Notice that the data set is also highly discretized as shown by the Crust

reconstruction. As we will explain in the following sections, the computational complexity

of our approach prohibits the use of the entire range data set. Instead, we uniformly sample

the data set to reduce it to less than one-third of the original size. We show in our results

that this reduced data set is suÆcient to generate detailed surfaces using our reconstruction

algorithm. Using the entire data set is not only computationally expensive, but may also

result in over�tting, which commonly occurs in algebraic �tting when a function is forced

to interpolate all data points. In Section VII-D.2, we describe the real range data sets and

how we applied the above method for constraint speci�cation to it.

In the next section we introduce variational implicit surfaces. These surfaces are created

by regularizing the volume in which the surface, exterior, and interior constraints are de�ned.

IV. Variational Implicit Surfaces

The surface reconstruction technique that we present in this paper is an extension of the

variational implicit surfaces of [28]. This approach is based on the calculus of variation and

is similar to surface regularization in that it de�nes an energy functional to be minimized.

Unlike surface regularization, however, the energy functional is de�ned in R3 rather than R2.

Hence, the functional does not act on the space of surfaces, but rather, on the space of 3D

functions. In [28], Turk and O'Brien used the following radially symmetric basis function

which inherently minimizes the thin-plate energy in 3D:
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�(r) = jrj3 (1)

In the above equation, r is the distance to the center of the basis function. In this paper

we will make use of other basis functions, but the basic formulation of our implicit functions

is the same. We will return later to the question of which basis function to use. Regardless

of which is used, each basis function is centered at each constraint point, and the resulting

implicit formulation is the summation of weighted radial basis functions and a polynomial:

f(~x) =
nX
i=1

wi�(j~x� ~cij) + P (~x) (2)

In the above equation, n is the number of constraint points; ~ci are the locations of the

constraint points corresponding to the centers of the basis; and wi are the weights for the

basis. The constraints may be surface, interior, or exterior points as de�ned in the previous

section. The polynomial term, P (~x), spans the null space of the basis function. For thin-

plate energy, the polynomial term consists of linear and constant terms because the thin-plate

energy consists of second order derivatives. The unique implicit function is found by solving

for the weights of the radial basis functions and the coeÆcients of the null space.

The unknowns, wi and the coeÆcients of P (~x), are solved by constructing a linear system.

Each constraint, ~ci is applied to Equation 2 to form one equation of the system. The function

value, f(~ci), at each constraint point is known since we have de�ned the constraint points

to be on the surface, or internal or external to the object. For an implicit function that

evaluates to zero on the surface, f(~ci) = 0. All exterior constraints are placed at the same

distance away from the surface constraints towards the camera viewpoints and are assigned

a function value of -1.0. All interior constraints are assigned a function value of 1.0. The

linear system can be formulated as a matrix equation, Mb = v, where v is an array of the

function values, f(~ci), at each constraint point, b is an array of the unknown weights, and M
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is a matrix which consists of the evaluation of the basis function at the Euclidean distance

between each pair of constraints. Explicitly, M , b, and v are de�ned as follows:
2
66666666666664

�(r11) � � � �(r1n) 1 ~c1

...
... 1

...

�(rn1) � � � �(rnn) 1 ~cn

1 1 1 0 0

~c1 � � � ~cn 0 0

3
77777777777775

2
66666666666664

w1

...

wn

p0

~p

3
77777777777775

=

2
66666666666664

f(~c1)

...

f(~cn)

0

0

3
77777777777775

rij = j~ci � ~cj j

(3)

For surfaces, constraints are 3D coordinates, ~c = (cx; cy; cz). The basis function, �(r) =

jrj3, tends toward zero as the distance between constraints approaches zero, and it tends

toward in�nite as the distance approaches in�nite. The above matrix is symmetric, and

all elements of the diagonal are zero because the distance between a constraint point and

itself is exactly zero. The system matrix is dense. Hence, sparse matrix techniques, such

as biconjugate gradient descent, do not reduce the time to obtain a solution. Instead, the

system can be solved using LU decomposition. Once the solution to the unknown weights are

found, the 3D implicit function is completely de�ned by Equation 2. The implicit surface is

a level-set of the 3D implicit function where it evaluates to zero. A polygonal representation

of the implicit surface may be obtained by iso-surface extraction using Marching Cubes [18].

In the unorganized points problem, the orientation of a point set is not de�ned, and thus

the orientation of the surface reconstructed from such a point set is not known a priori. Turk

and O'Brien restrict the surface orientation by pairing each surface constraint with a normal

constraint that is interior to the surface and has a function value of 1.0. For implicit surfaces

constructed from a polygonal model, surface constraints are de�ned by the vertices of the

polygons, and normal constraints are de�ned by vertex normals. Radial basis functions are

centered at surface and normal constraint locations. In the case of vision-based data sets
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Fig. 2. From left to right: two views of the Crust reconstruction from entire data set, two views of the
interpolating variational implicit surface, and two views of the approximating variational implicit suface.
The variational implicit surfaces were generated using the basis, �(r) = jrj3, centered at 3000 surface,
100 interior, and 264 exterior constraints.

such as those considered in this paper, there are no surface vertices or normals to be used

as constraints. Instead, we specify surface, exterior, and interior constraints in the manner

described in Section III. These constraints de�ne the orientation of the surface.

The reconstruction shown in the two middle panels of Figure 2 is an example of a surface

reconstructed from real range data using the variational technique of Turk and O'Brien with

the basis function �(r) = jrj3. The constraints for this reconstruction were obtained from

range images using the method described in Section III. 3000 surface, 264 exterior, and 100

interior constraints were speci�ed. The resulting surface exactly interpolates the constraint

points. Overshoots are apparent between the arms and face which are fused, as well as

between the feet. These overshoots are the cause of exact interpolation which forces the

surface to pass through constraint points. In addition, there are cavities which penetrate

the tail and form small pockets within the surface. This reconstruction is evidence that

exact interpolation algorithms are sensitive to noise in the data which is especially prevalent

in vision-based data sets. In this paper we improve upon these results in several ways. In

the next section, we show that better results may be obtained by introducing a regularizing

parameter that allows the surface to pass close to, rather than exactly through, the constraint

points. In a later section, we demonstrate that using di�erent basis functions also improves
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upon the surfaces that are created.

V. Approximation vs. Interpolation

Scattered data interpolation is the process of estimating previously unknown data values

using neighboring data values that are known. In the case of surface reconstruction, the

surface passes exactly through the known data points and is interpolated between the data

points. Data interpolation is appropriate when the data values are precise. In vision-based

data, however, there is some uncertainty in the validity of the data points. Using data inter-

polation to construct the surface is no longer ideal because the surface may not actually pass

exactly through the given data points. This is precisely the problem with algorithms from

computational geometry that generate polygonal meshes using data points as the vertices of

the mesh. If the uncertainty of the data points is known, a surface that better represents

the data would pass close to the data points rather than through them. Constructing such

a surface is known as data approximation. Many vision-based techniques for capturing 3D

surface points have an associated error distribution or con�dence range for the data points.

In this section we discuss how data approximation is achieved in our framework.

We can allow the surface to pass close to, but not necessarily through, the known data

points by relaxing the constraints of the linear system. We use the formulation discussed

in [12]. A derivation is presented therein which shows that a summation of weighted radial

basis functions as given in Equation 2 is the solution to minimizing a cost functional, H of

the following form: H[f ] =
1

�

nX
i=1

(yi � f(~xi))
2 + �[f ] (4)

In the above equation, f is the unknown surface function, n is the number of constraint

points, or observed data points; yi are the observed values of the data points at locations ~xi;

�[f ] is the smoothness functional, such as thin-plate; and � is a parameter to weigh between

�tness to the data points and smoothness of the surface. The term � is often called the
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regularization parameter. We use � to specify how closely we want to approximate the data

set. In our framework, constraint points are interpolated when � = 0 and are approximated

when � > 0. In the above equation, � is de�ned as a global parameter. However, � need

not be global, since it is simply a parameter which controls the trade-o� between �tness to

the data versus strength of the smoothness assumption. We can assign such a parameter to

individual constraints, so that the trade-o� is between the �tness to one particular constraint

versus the �tness to all other constraints plus the strength of the smoothness assumption.

We can modify Equation 4 by repositioning � as follows, and de�ning it for each constraint:

H[f ] =
nX
i=1

1

�i
(yi � f(~xi))

2 + �[f ] (5)

The � values may be assigned according to the noise distribution of the data acquisition

technique. It is included in the system matrix of Equation 3 in the following manner:
2
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~c1 � � � ~cn 0 0

3
77777777777775

2
66666666666664
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3
77777777777775

=

2
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f(~c1)

...

f(~cn)

0

0

3
77777777777775

rij = j~ci � ~cj j

(6)

The ability to assign distinct � values to individual constraints is especially important when

we use exterior and interior constraints because they are added only to provide orientation to

the surface but do not represent real data. A large � value such as 2.0 is often used for exterior

and interior constraints, while small values such as 0.001 is often used for surface constraints.

We can also use � as a local �tting parameter by assigning a � value for each surface constraint

based on the con�dence measurement of the data point. This may not be possible, however,

if individual con�dence measurements are not available, or if the con�dence measurements

themselves are imprecise. In practice, we have found that � works well as a semi-global
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λ=2.0λ=0.0 λ=0.001 λ=0.03

Fig. 3. The data set is from a synthetic range image of a corner of a cube. � is varied from 0 at the left to
2.0 at the right. � = 0:001 for the second reconstruction from the left.

regularizing parameter, where one � value is used for all surface constraints, and another

for all interior and exterior constraints. Figure 3 shows the results of applying di�erent

� values on the same data set. Note that for each reconstruction, the same � value was

used for all surface points. As � approaches zero, the surface becomes rougher because it is

constrained to pass closer to the data points. At � = 0, the surface interpolates the data,

and overshoots are much more evident. At larger values of �, the reconstructed model is

smoother and approaches an amorphous bubble. We have found that a � value of 0.001 for

surface constraints generates visually pleasing reconstructions. In Section VII we validate

this choice of � using measures of �tness and curvature.

The two far right panels of Figure 2 show the reconstruction of the toy dinosaur using

the same 3000 surface, 264 exterior, and 100 interior constraint as that of the two middle

panels but with � set to 0.001 for all surface constraints. The surface is much smoother,

the overshoots are less apparent, and there are fewer protruding bumps and fewer small

pockets embedded in the surface. Unfortunately, the toy dinosaur's features are blobby and

amorphous, especially at the feet and hands. Distinct limbs, such as the feet and tail, are

fused together. It is apparent from this result that the radial basis function used by Turk

and O'Brien generates models which are too blobby. In addition, the dense matrix produced

by the thin-plate radial basis function is computationally intensive to solve. Computation

time increases signi�cantly as more constraints are speci�ed because the complexity of LU
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decomposition is O(n3), where n is the number of constraints. The coeÆcients of the implicit

function for the approximating model in Figure 2 were solved in 36.7 minutes on an SGI

Origin with 195 MHz MIPS R10000 processor. In the next section, we explore the use of

a radial basis function that minimizes multiple orders of smoothness, not just thin-plate

energy. This basis function turns out to be amenable to sparse matrix solutions (enabling

the speci�cation of many more constraints) and is signi�cantly less blobby in nature.

VI. A Radial Basis Function for Multiple Orders of Smoothness

The results of Figure 2 show that a balance is needed between a tightly �tting, or shrink-

wrapped, surface, and a smooth surface. A tightly �tting surface separates the features of

the model but is prone to jagged artifacts. For example, the Crust reconstruction, shown in

Figure 2, is an exact �t to the data with no smoothness constraint. On the other hand, a

smooth surface may become too blobby as seen in the variational implicit surfaces of Figure

2, which show that minimizing the thin-plate energy alone is not suÆcient to produce a

surface that separates features well and is locally detailed.

In [6], Chen and Suter derive the radial basis functions for the family of Laplacian splines, of

which the �rst, second, and third order energy-minimizing splines are members. Thin-plate

energy is equivalent to second order energy, and membrane to �rst order energy. For the �rst

three dimensions, the basis are comprised of rk, rklogjrj, exponential, and Bessel function

terms, where r is the distance from the center of the radially symmetric basis. The value of k

depends on the dimension and order of smoothness. Turk and O'Brien use �(r) = jrj2logjrj

for two dimensional thin-plate interpolation, and �(r) = jrj3 for three dimensional thin-plate

interpolation. One dimensional plots of these radial basis functions are shown in the left plot

of Figure 4. The plots show that the functions exhibit global inuence because the value

of the function tends toward in�nite as the distance from its center increases. The system

matrix, which consists of the evaluation of the basis function at distances between pairs of
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Fig. 4. Cross section of radially symmetric basis functions for thin-plate (left) and for a combination of
�rst, second, and third order smoothness (middle and right). In the middle plot, Æ varies from 10 to 30,
� = 0:01. In the far right plot, Æ = 0:25, � varies from 0.01 to 0.5.

constraints, is dense because constraint points are sparse and uniformly spread across the

region of interest.

Surprisingly, a radial basis function that minimizes a combination of energies quickly falls

toward zero, yielding a better conditioned system matrix. In [22], Suter and Chen used

basis functions that minimize multiple orders of smoothness (beyond the �rst and second

order) to reconstruct human cardiac motion. They found that a model minimizing third and

fourth order energy resulted in the smallest RMS error. They concluded that basis functions

that minimize more than just the �rst and/or second order energy generate more accurate

reconstructions. In particular, as the space dimension increases, the order of continuity of

the thin-plate spline at data points decrease. Suter and Chen show that in 3D, the thin-plate

spline basis has discontinuous �rst order derivatives at the data points. We chose to use a

basis that achieves �rst, second, and third order smoothness because, unlike motion, object

surfaces may contain sharp features which are C1 discontinuous. The additional third order,

however, enhances smoothness since its continuity does not break down in 3D.

In [6], Chen and Suter derive such a basis, using a smoothness functional comprised of the

�rst, second, and third order Laplacian operator. The associated partial di�erential equation

is similar to Laplace's equation ��f = 0, but also has higher order terms:
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�Æ�f +�2f � ��3f = 0 (7)

In the above equation the Laplacian operator in 3D is:

�f =
@2f

@x2
+

@2f

@y2
+

@2f

@z2
(8)

In equation 7, Æ controls the amount of �rst order smoothness, and � controls the amount

of third order smoothness. The balance between Æ and � controls the amount of second order

smoothness. The radial basis that inherently minimizes the above energy functional in 3D

as derived in [6] is given below:
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In the above equations, r is the distance from the center of the radial basis function. Æ

and � are the only free parameters in de�ning the basis function. The middle and right plots

of Figure 4 show one dimensional plots of the above function for various values of Æ and � .

Unlike the plot for �(r) = jrj3, these plots show that the value of the basis function quickly

falls toward zero as the distance from its center increases.

The center plot of Figure 4 shows that as Æ is increased, the basis falls toward zero faster

and has less global inuence. In the limit, the basis are simply spikes, and the resulting

3D implicit function would have steep gradients between spiky points. A zero-valued level-

set of such a function would also exhibit sharp features because the spikes are centered at

constraint points, including surface constraints where the implicit function evaluates to zero.

The �rst three reconstructions of the toy dinosaur in Figure 5 correspond to the di�erent

values of Æ in the middle plot of Figure 4. The surface becomes increasingly pinched at the

constraint points as Æ is increased. Visually, the pinching appears as surface detail that is
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Fig. 5. Æ is varied in the �rst three reconstructions, while � is varied in the last three. The lower panels
are closeups of the dinosaur tail, showing the di�erences between the reconstructions. The models
were generated using the same 3000 surface, 100 interior, and 264 exterior constraints as those of the
variational implicit reconstructions in Figure 2.

often missing in overly smooth surfaces. Despite the pinching, the surface remains globally

smooth. These reconstructions are substantial improvements over those shown in Figure 2.

The right plot of Figure 4 shows that as � is increased the center of the basis becomes

increasingly smooth. In the limit, the basis becomes parabolic and enforces homogeneous

curvature around constraint points. Consequently, the resulting 3D implicit function and

its iso-surface becomes increasingly smooth as � is increased. The last three reconstructions

in Figure 5 correspond to the various values of � plotted in Figure 4. In the limit, the

reconstructed surface becomes amorphous, similar to those obtained from large values of �.

The system matrix formed by Equations 9 and 10 is diagonally dominant and is especially

amenable to the biconjugate gradient method of solving linear equations. Timing results

show that the unknown weights of Equation 2 were solved in 1.7 minutes using the multi-

order basis function with Æ = 10 and � = 0:01, while the system matrix generated for the

same set of 3364 constraints using the thin-plate radial basis function required 36.7 minutes

to solve. Not only are these new results superior in terms of quality, but they also require
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considerably less time to create than the original formulation of Turk and O'Brien.

The range of weights used in Figure 5 for Æ and � were chosen to span the search space of

possible values. Selection of the weights is constrained by Equation 10, in which both Æ and

� appear under the square root. Values for Æ and � were chosen to avoid imaginary values

for v and w. Figure 8 (page 25) is a plot of the range of allowable values for Æ and � .

Determining the values of Æ and � that correspond to the best reconstruction of a surface

is an important issue. Visually, we can see that the �rst three reconstructions in Figure 5

are more pleasing in terms of trade-o� between surface detail and smoothness than the last

three. In addition, the arms, legs, and tail of the dinosaur in these reconstructions are better

separated, and the back more detailed than that of the reconstruction shown in the two

right panels of Figure 2 which was produced by the thin-plate radial basis function. Judging

between the three left reconstructions of Figure 5 is, however, more diÆcult. Deciding that

one is better than another amongst these three is quite arbitrary and subjective. In the next

section, we discuss two methods we have used for validation and as a tool for comparison

between the reconstructed models. These methods include a measure of �tness error and a

measure of average curvature. They are exactly the attributes that the basis functions and

the parameters, �, Æ and � , regulate.

VII. Results

Figure 6 is a visual comparison of di�erent reconstructions of the toy dinosaur. This �gure

shows the original data (far left), the Crust reconstruction (middle left), and the implicit

surface using the thin-plate basis function (middle). At the middle right and far right of the

�gure is the new reconstruction using the techniques of this paper (untextured and textured).

Note that the round protrusion beneath the arm is the turn key of the actual toy dinosaur

(see Figure 12 for the original images). We show further evidence in this section, using new

and synthetic data sets, that reconstruction by volumetric regularization generates globally
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Fig. 6. From left to right: original voxel data set from space carving, Crust reconstruction from entire data
set, implicit surface reconstruction using the thin-plate radial basis function, our new implicit surface
reconstruction using the multi-order radial basis function, and a textured version of our reconstruction.

smooth, yet detailed, surfaces. Finally, we discuss the addition of color to the models.

We have introduced three parameters, �, Æ and � , in our reconstruction algorithm. We

now show that for the purpose of surface reconstruction from sparse point sets, there are a

limited number of possible values for these parameters that will produce desirable results.

We validate and compare the reconstructions based on visual inspection, a measure of �tness,

and a measure of curvature. By delimiting the space of values for these parameters, we show

that reconstruction by volumetric regularization requires minimal parameter tuning.

A. Selecting �

Recall from Section V that � controls the trade-o� between �tness to the data points and

the smoothness assumption. The following measures of �tness and curvature corroborate

this fact, as well as help guide the selection of appropriate values for �.

A.1 Fitness Error

We de�ne �tness error to be the aggregate distance between the original data points and

the reconstructed surface. We measure this distance by �rst constructing a polygonal model

from the implicit function using Marching Cubes [18], and then �nding the closest vertex of

the polygonal model to a given data point. This vertex serves an initial starting point on

the surface from which we can then search for even closer surface locations to the given data
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Fig. 7. From left to right: plots of aggregate �tness error, average curvature, and surface area for the
toy dinosaur reconstructions using the thin-plate (o) and multi-order (*) radial basis functions, for
� =0.0003, 0.001, 0.003, 0.01, 0.03, and 0.1 for surface constraints. The vertical dashed line in all three
plots mark the location of � = 0:003.

point. We �nd a closer surface location by crawling along the surface in small increments

until a small increment in any four orthogonal directions along the surface does not yield a

location that is closer to the original data point. When this stopping location is found, the

Euclidean distance is calculated and accumulated.

The left plot in Figure 7 shows the total �tness error for the dinosaur reconstructions

using thin-plate and multi-order basis functions at various values of �. As expected, small

values of � correspond to less error in data �tness. Note that the error is an accumulation

of the Euclidean distance measured at all the original data points, not just the constraint

points used in the reconstruction. Consequently, the error is not zero even when � = 0,

corresponding to exact interpolation. Error in �tness rises more sharply for the multi-order

radial basis function as � is increased than for the thin-plate basis function. At lower values

of � (0.003 or less), the aggregate error for both basis are comparable. The sharp rise in

�tness error for the multi-order basis provides a practical upper bound of 0.003 for � (dashed

line in the plots of Figure 7 mark the location of � = 0:003).
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A.2 Measure of Curvature

The next quality measure we describe is the average curvature of the surface. We measure

the curvature of the surfaces using polygonal models that are extracted from the implicit

function using Marching Cubes [18]. We measure curvature at each vertex of these polygonal

models using a curvature approximation that was developed for the smoothing operator in

[9]. This measure is based on the normal directions of triangles adjacent to each vertex and

normalized by the total area of the triangles. High curvature is associated with sharp features

in the surface, while low curvature is associated with overshoots and blobby surfaces.

The center plot in Figure 7 shows the average curvature for the thin-plate and multi-order

radial basis functions at various values of �. As expected, the curvature drops at large �

values since the constraints are no longer interpolated and the inuence of the smoothness

model is stronger. The plot reveals that the curvature of the surface generated by the multi-

order basis is higher than that generated by the thin-plate basis at � values of 0.003 or less.

The low curvature of the thin-plate surface at � values of 0.003 or less corresponds with the

blobbiness seen in the thin-plate reconstructions of Figure 2. When � is greater than 0.003,

however, the surface generated by the multi-order basis exhibits lower curvature than that

of the thin-plate basis. This is further evidence that � should be kept at 0.003 or less.

A measure of the surface area shown in the plot on the right in Figure 7 reveals that

the thin-plate basis tends to produce larger surfaces (an indication of overshooting surfaces)

across all values of �. The multi-order basis function achieves a good balance between a tight

�t and a smooth surface because they generate surfaces with high curvature and equivalent

�tness error in comparison to the thin-plate basis. We have found that � values between

0.001 and 0.003 work well in practice, and this is consistent with the data of Figure 7. All

examples of our reconstruction were created using a value of 0.001 for �.
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B. Selecting Æ and �

Recall from Section VI that Æ controls the amount of �rst order smoothness, while �

controls the amount of third order smoothness. Figure 5 shows reconstructions of the toy

dinosaur data set using various values of Æ and � . In selecting appropriate values for these

parameters, we began with the values used for the �rst three reconstructions in Figure 5

rather than those used in the last three reconstructions because the �rst three models are,

visually, a better reproduction of the original data set from space carving. The last three

reconstructions in Figure 5 span di�erent � values and show that large � values produce

models which are far too smooth and blobby. Consequently, we constrained our search space

to be more along the Æ axis than along the � axis. Figure 8 shows the valid range of values

for Æ and � to avoid imaginary values in Equation 10. The blue line in the graph indicates

the limiting values, and the red stars are the parameter values that we tested. Within our

selected search space, Æ becomes a coarse adjuster, while � is a �ne adjuster for �tness and

curvature. We show in the following sections that selection of the Æ and � values is not an

extra burden on the user because there is a limited space of values which produce locally

detailed and globally smooth surfaces with low �tness error.
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B.1 Fitness Error

The left plot of Figure 9 is the average �tness error for the toy dinosaur reconstructions

using various values of Æ and � . Fitness error was measured for Æ values of 1.0, 5.0, 10.0, 15.0,

20.0, 30.0, and 40.0, and � values of 0.0005, 0.001, 0.005, 0.01, and 0.05 (di�erent values

were used for this last � value due to the imaginary value limitation as shown in Figure 8).

The plot shows that, within this search space, Æ has greater inuence on �tness to the data

since changes in Æ cause greater changes in �tness error than changes in � . In general, larger

Æ values produce a tighter �t, corroborating the fact that Æ controls �rst order smoothness.

Although it is not plotted in the graph, a Æ value of 50.0 was found to result in even greater

�tness error, indicating that Æ should not be set above 40.0. In practice, values of 30.0 and

40.0 for Æ produced the most detailed, yet smooth surfaces. At such values, the average

�tness error is below 0.5 in Euclidean distance. This corresponds exactly with the data set

in that the range resolution is 0.5. A value of 0.01 or 0.005 for � was found to consistently

produce the smallest �tness error across all values of Æ. These values correspond to the

second and third gridlines along the � axis.
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B.2 Measure of Curvature

The right plot of Figure 9 is the average curvature of the reconstructions using the same

values of Æ and � as that of the left plot in Figure 9. Although a pattern is not as apparent

here as in the �tness plot, the plot supports the fact that Æ controls �rst order smoothness,

while � controls third order smoothness. High curvature is maintained at large values of Æ

and small values of � , while low curvature is prevalent at large values of � . Recall that low

curvature is associated with overshooting surfaces that tend to be blobby. Æ values of 40.0

or 30.0 (�rst and second grid lines along the Æ axis) and � values of 0.01 or 0.005 (second

and third grid lines along the � axis) generate surfaces which exhibit high curvature and low

�tness error compared to other values.

C. Generalizing the Parameter Values

We applied the measures of �tness and curvature to the toy dinosaur data set in order

to guide selection of appropriate values for �, Æ, and � . We have found in practice that

these same values may be used with other data sets to produce desirable reconstructions.

Examples of our reconstructions of other data sets are shown in Figures 10 and 11. Note

that although values of 30.0 and 40.0 for Æ were found to produce the most visually detailed

surfaces for the toy dinosaur data set, values of 10.0 and 20.0 produced surfaces which were

only slightly more blobby (see the closeup of Figure 5). We have found in practice that

values of � between 0.001 to 0.003, Æ values between 10.0 to 40.0 and � values between 0.005

to 0.01 can be used to produce locally detailed, yet globally smooth, reconstructions on a

variety of data sets. By delimiting the space of useful values for �, Æ, and � , we have shown

that these three control parameters do not create additional burden on the user.

D. Ground Truth Comparison

The challenge in validating and judging between di�erent surface reconstructions of a data

set is due to the fact that no ground truth surface exists. We do not know precisely how the
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Fig. 10. From left to right: the original Stanford bunny consisting of 69,451 triangles, two views of surface and
exterior constraints used to perform reconstruction, and two views of the variational implicit surface
reconstructed using the multi-order basis. Blue squares are surface constraints. Green squares are
negative exterior constraints.

surface behaves between data points, and, in the case of vision-based data sets, we cannot

be positive that the surface even passes through the observed data points. One way of

validating a surface reconstruction algorithm is to compare the results of reconstructing a

synthetic data set to the original model from which the data set was obtained. In the next

sections, we show results from synthetic data as well as discuss the real range data that was

used in previous sections.

D.1 Synthetic Range Data

We use a modi�ed ray-tracer [15] to generate synthetic range images as one test of our

reconstruction method. We used the Stanford Bunny as our test model, and created three

synthetic range images from positions separated by 120 degrees on a circle surrounding

the model. We used these three synthetic range images as input data to our reconstruction

algorithm. For each range image, surface constraints are created by uniformly downsampling

the range image to reduce the size of the data set. For each surface constraint, one exterior

negative constraint is created within the free space described in Section III. Additional

exterior constraints are de�ned on a sphere surrounding the bounding box of the object at

a distance farther away from the object. No additional interior constraints are used because
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the exterior constraints are suÆcient to de�ne the orientation of the surface. The far left

panel of Figure 10 shows the original Stanford Bunny model consisting of 69,451 triangles,

and the middle and middle left panels show the distribution of constraints de�ned for the

Bunny. Surface constraints are drawn as blue squares embedded in the surface, and negative

constraints are drawn as green squares. The middle right and far right panels of Figure

10 show the implicit surface reconstructed from 2168 surface and 193 exterior constraints,

using the multi-order basis function. Values of � = 0:001, Æ = 10, and � = 0:01 were used

to reconstruct the surface. The two views of the reconstructed bunny show that our model

is quite similar to the ground truth. Our reconstruction method produces plausible surfaces

even in locations where the data is quite sparse. The model is closed on the top and bottom

of the Bunny even though few constraint points were placed in those locations (top of the

Bunny shown in the third panel of Figure 10). The model is closed at these places due to

the inherently manifold nature of implicit surfaces, and it is smooth at these locations by

virtue of minimizing the cost functional.

D.2 Real Volume-Carved Data

Synthetic data does not have the noisy characteristic of real data. We now describe the

real space carved data that we use and how we de�ne the surface, interior, and exterior

constraints. We use two data sets of real objects obtained through methods from com-

puter vision { a toy dinosaur (from Steve Seitz [21]) and a broccoli stalk. Both data sets

were obtained by taking about 20 images approximately on a circle around each object.

Thin-shelled, voxelized surfaces were then constructed using the generalized voxel coloring

algorithm [7]. The space is carved by splatting each voxel towards each calibrated camera

and determining the consistency of the voxel color across the images. If the variance in

color intensity is below a speci�ed threshold, the voxel is kept as part of the object surface.

Otherwise, it is cast out and assigned a zero opacity value. The data consists of red, green,
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Fig. 11. From left to right: volumetric data set of a broccoli stalk from space carving, reconstructed implicit
surface generated using the multi-order basis, reconstructed implicit surface textured using the original
images.

and blue channels. Non-empty voxels represent the presence of a surface, as deduced by the

voxel coloring algorithm.

In de�ning surface constraints, we use the volume as a binary representation in which

non-empty voxels are surface locations. We apply the technique described in Section III to

de�ne the surface, exterior, and interior constraints to reconstruct the object. We do not use

the entire set of surface voxels because the system matrix would become too large (19,641

surface voxels for the dinosaur data set), and the reconstructed surface would over �t the

data, resulting in overshoots. To obtain a subset of these surface voxels we sample the volume

by randomly selecting voxels. Each time a voxel is selected, the neighboring voxels within

a small radius are eliminated from possible selection in the next round. The elimination

process prevents clusters of closely placed constraint points, and resembles a 3D version

of Poisson disc sampling. Interior constraints are obtained by traversing the binary volume

along the three principal axis. All points occurring between pairs of non-empty surface voxels

are marked as interior. Only voxels which are marked as interior by all three traversals are

kept as interior constraints. Exterior constraints are found by projecting each surface voxel

in the volume to the image plane of each camera. If the ray from the surface voxel to a

camera intersects other surface voxels, then the view of the voxel is blocked. Otherwise, the
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Fig. 12. The top row of images are four of the original input images used to generate the space carved data
set of the toy dinosaur. The bottom row are images of the reconstructed implicit model rendered from
the original camera viewpoints. A novel viewpoint of the implicit model is shown in Figure 6

camera has an unobscured view, and an exterior constraint can be placed at a small distance

away from the surface voxel along the ray towards the camera, as depicted in Figure 1.

Note that for each surface voxel, an exterior constraint is created for each camera that has

an unobscured view of the surface voxel. Again, only a subset of the interior and exterior

constraints are selected by the Poisson disc sampling technique described above. Once a

speci�ed number of constraints have been collected, they are given to the reconstruction

algorithm. In this paper, we have used from 800 to 4500 surface constraints. In practice, we

have found that 100 or 200 interior and exterior constraints suÆce to de�ne the orientation

of the surface. Figures 6 and 11 are examples of our reconstructions from space carved data.

E. Model Coloring

In order to create a color version of the surface, we begin with a polygonal model that was

obtained through iso-surface extraction using Marching Cubes [18]. We assign a color to

each triangle of the polygonal model by reprojecting the triangles back to the original input

images. Each triangle in the polygonal model is subdivided until its projected footprint in

the images is subpixel in size, so that it can simply take on the color of the pixel to which

it projects. In most cases, a triangle is visible in several of the original images. We combine
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the colors from the di�erent images using a weighted average. The weight of each color

contribution is calculated by taking the dot product between the triangle normal and the

view direction of the camera that captured the particular image. Cameras with viewing

directions that are nearly perpendicular to the triangle normal contribute less than those

with viewing directions that are nearly parallel to the triangle normal. We use z-bu�ering

to ensure that only cameras with an unobscured view of the triangle can contribute to the

triangle color. Figures 6 and 11 show the �nal models of the toy dinosaur and broccoli

from novel viewpoints after color has been applied. Figure 12 is a comparison of four of the

original input images with rendered images of the reconstructed implicit surface from the

same camera viewpoints.

VIII. Conclusion and Future Work

The reconstruction algorithm we have presented in this paper generates models that are

smooth, seamless, and manifold. Our method is able to address challenges found in real

data sets, including noise, non-uniformity, low resolution, and holes in the data set. We have

compared our technique to an exact interpolation algorithm (Crust), to thin-plate variational

implicits, and to the original volumetric reconstruction using the toy dinosaur as a running

example. Obvious advantages to the models generated by volumetric regularization are that

there are no discretization artifacts as are found in volumetric models, and the surface is

not jagged as in the Crust reconstruction. Volumetric regularization can generate approx-

imating, rather than interpolating, surfaces, and is most closely related to the thin-plate

variational implicit approach. It compares favorably to the thin-plate variational implicits

in computation time as well as in the surfaces that are generated. Using the multi-order ra-

dial basis function, volumetric regularization generates locally detailed, yet globally smooth

surfaces that properly separate the features of the model.

We have adapted the variational implicits approach to real range data by developing meth-
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ods to de�ne surface, interior, and exterior constraints. Although surface points are directly

supplied by the range data, we have introduced new methods for creating interior and ex-

terior constraints using information about the camera positions used in capturing the data.

We have applied this technique to space carved volumetric data and synthetic range images.

Finally, we have developed and applied measures of �tness error and curvature to the

reconstructed surfaces. These measures guided selection of the regularization and smoothness

parameters, and attest to the bene�ts of the multi-order radial basis function over the thin-

plate radial basis function.

We plan to look at several potential improvements to our approach, including use of con-

�dence measurements, adaptive sampling, and adaptively modifying the basis functions lo-

cally. Recall that the � parameter may serve as a local �tting parameter since a unique

value may be assigned to each constraint point. For each 3D surface point obtained from

the generalized voxel coloring algorithm, the � value can be assigned based on the variance

of the colors to which the surface voxel projects in the input images. Another improvement

would be to de�ne more constraint points in areas of the model that contain sharp or small

features. These areas can be identi�ed by looking for high curvature regions on the surface.

This is an adaptive sampling approach in which uniform sampling is used to generate an

initial surface, and then, additional sampling would be performed in areas of high curvature.

Another alternative is to assign di�erent Æ and � values for the multi-order basis at di�er-

ent locations in the model. The Æ and � parameters could be assigned for each constraint

according to the curvature measure at that constraint point. These future directions hold

promise of further re�ning the sharp features of reconstructed surfaces of real world objects.
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