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Mappings between surfaces have a variety of uses, including texture transfer, multi-way morph-
ing, and surface analysis. Given a 4D implicit function that defines a morph between two surfaces,
this paper presents a method of calculating a mapping between the two surfaces. We create such a
mapping by solving two PDE’s over a tetrahedralized hypersurface that connects the two surfaces
in 4D. Solving the first PDE yields a vector field that indicates how points on one surface flow to
the other. Solving the second PDE propagates position labels along this vector field so that the
second surface is tagged with a unique position on the first surface. One strength of this method
is that it produces correspondences between surfaces even when they have different topologies.
Even if the surfaces split apart or holes appear, the method still produces a mapping entirely
automatically. We demonstrate the use of this approach to transfer texture between two surfaces
that may have differing topologies.

Categories and Subject Descriptors: Computer Graphics [Computational Geometry and Object Modeling]:
Geometric algorithms, languages, and systems

General Terms: Algorithms

Additional Key Words and Phrases: Morphing, Texture Mapping, Surface Correspondence.
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Fig. 1. Transferring a texture during shape transformation – pulling apart a patchwork bunny (model from Cyber-
ware). We solve PDEs over a 4D mesh to obtain a mapping from the sphere to the bunny. Once the source bunny
shape has texture coordinates, these coordinates are transfered directly to consecutive shapes in the morph using
the same PDEs.

1. INTRODUCTION

There are many tasks in computer graphics that require a mapping between two surfaces
A and B. Perhaps the most well-known example is texture mapping, where one of the
surfaces is a rectangular patch in 2D and the other surface is an object in 3D that requires a
texture. Morphing between surfaces (sometimes called shape transformation) is a second
common use of mappings between surfaces. Yet another application of mappings is to
analyze a collection of surfaces to look for patterns of common features. To date, graphics
researchers have concentrated on producing mappings for parametric surfaces. Implicit
surfaces have received less attention. This paper presents a method of creating a mapping
between two implicit surfaces for which an implicit morph has already been defined.

Implicit representations are especially popular for shape morphing because they grace-
fully handle changes in topology. Many algorithms for generating implicit morphs have
been published [Hughes 1992; Payne and Toga 1992; He et al. 1994; Wyvill 1997; Cohen-
Or et al. 1997; Turk and O’Brien 1999; Breen and Whitaker 2001]. Given a shape trans-
formation using any implicit approach, our technique creates a mapping between shapes
A and B. This mapping can be used in many ways, including texture transfer, multi-way
morphing, and surface analysis. In this paper, we show how the mapping can be used for
texture transfer. For multi-way morphing, mappings are generated between all of the input
shapes and used in affine combinations of the shapes. With a mapping between two sur-
faces in hand, we can also perform surface analysis by comparing how the surfaces stretch
or compress relative to each other. Later in Section 6.3, we perform such an analysis to
measure how texture is stretched in our texture transfer application. Examples of many of
these applications can be found in [Praun et al. 2001] using mesh parameterizations.

Figures 1 and 3 show the strengths of our algorithm. In Figure 1, we transfer texture
during a morph directly from one intermediate shape to the next without particle tracing.
In previous particle tracing approaches, particles must be propagated from a parameterized
domain (e.g. a sphere) to each intermediate shape in the morph separately for texturing. In
Figure 3, we show that our approach can transfer texture to surfaces of complex topology.

Our map creation technique relies on the solution of two partial differential equations
(PDE’s) on an n manifold in n + 1 dimensions, where n = 3 for morphing between 3D
surfaces. Because the lower-dimensional case is easier to follow, we will describe the
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Fig. 2. (a) 2D example of mapping from one closed contour (shape A) to two disjoint contours (shape B). (b)
2D Manifold extracted from the implicit morph spanning 2D space and time. The surface is colored according to
the value of the scalar field s. Red lines depict the vector field T defined by the gradient of s. (c) Propagation of
labels along the vector field generates an explicit mapping shown as labeled points on the contours.

method for producing a mapping between two 2D contours (see Figure 2). The first step
is to create a mesh of triangles that forms a surface (2D manifold) connecting the two
contours A and B in 2D space plus time (n+1 dimensions, where n = 2 for contours). Such
a triangle mesh is created from the implicit morph using standard iso-surface extraction
techniques such as Marching Cubes [Lorenson and Cline 1987]. Next, we solve Laplace’s
equation (related to heat diffusion) that assigns a scalar value s to every vertex of the mesh.
Vertices at contour A have value s = 0, vertices of B have s = 1, and vertices between A and
B take on intermediate values. The gradient of this scalar field gives us a vector field that
flows from A to B. Finally, we solve a second PDE (a transport equation) that propagates
position labels from A to B along the vector field. These position labels (which we call L)
define our mapping F : A → B. For creating a mapping between surfaces, all of these same
operations are performed on a collection of tetrahedra in 4D rather than on triangles in 3D.
The steps in our approach are detailed in Section 4.

After covering related work, we describe the steps needed to produce a mapping: tetra-
hedralization, solving the first PDE to get a vector field, and then propagating the labels
with the second PDE. We then demonstrate the transfer of texture using our mappings, and
in the process describe how we treat topological seams and texture seams.

2. RELATED WORK
Related work in the graphics literature include surface correspondence methods for trian-
gle meshes, shape morphing methods using implicit functions, and texture mapping. In
addition to reviewing these areas, we also review a PDE method for measuring annular
tissue thickness that motivates the mathematical approach in this paper in Section 4.

Algorithms for shape morphing can be grouped into two categories. The first are meth-
ods that generate an explicit parametric correspondence between meshes. The shape is
transformed from one mesh to the other by moving points along the parameterized paths of
correspondence. The primary disadvantages of these methods is that they cannot handle a
change of topology automatically, and they may require significant user input. The second
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Seams

Fig. 3. Texturing a shape with complex topology. Texture was transferred from a sphere (top left) to the Happy
Buddha model (middle). Bottom left: Surface colored by texture coordinates. Blue indicates topological seams.
Right: Close-up of topological seams.

category of morphing algorithms include methods that generate an implicit function that
spans space and time. Intermediate shapes in the transformation are obtained by extracting
all points where the implicit function evaluates to zero at the given time slice. Unlike the
mesh correspondence methods, changes in topology are given for free by these methods in
that the changes need not be explicitly defined. Unfortunately, a mapping between points
of the different shapes in the transformation are not given. [Lazarus and Verroust. 1998] is
a good survey of morphing algorithms.

2.1 Correspondences for Meshes
There are several published methods for creating mappings between triangle meshes, mostly
with the goal of creating shape transformations. An early paper on this topic is [Kent et al.
1992] in which the authors map convex and star-shaped objects onto a unit sphere. Cor-
respondence between two shapes is then defined through the intermediate shape of the
sphere. Kaul and Rossignac construct a Parameterized Interpolating Polyhedron (PIP)
representing the evolving shape such that faces of the evolving shape have consistent ori-
entation, and vertices move on a straight line from source to target [Kaul and Rossignac
1991]. Kanai et al. use harmonic maps to generate a transformation between two shapes
that are homeomorphic to a sphere [Kanai et al. 1997]. A harmonic mapping embeds a
3D object onto a 2D disk by positioning the single loop boundary of the object onto the
boundary of a disk [Eells and Sampson 1988]. Additional user control and transformations
between non-spherical homeomorphic shapes are handled in [Kanai et al. 2000]. Gregory
et al. produce morphs by having the user select corresponding vertices on two polyhedra of
the same genus. Their system automatically decomposes the polyhedra into patches based
on these feature points [Gregory et al. 1998]. Lee et al. developed MAPS (Multiresolution
Adaptive Parameterization of Surfaces) to establish a correspondence between a detailed
mesh and a simplified version of the same mesh [Lee et al. 1998]. In [Lee et al. 1999], they
establish a correspondence between the base domains of source and target shapes for shape
morphing. Praun et al. use a restricted brush fire algorithm to construct correspondences
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between multiple surfaces based on feature points identified by the user [Praun et al. 2001].
The parametric mesh correspondence methods described above are constrained to trans-

formations between meshes of a common genus. Takahashi et al. overcome this restriction
by allowing the specification of a key-frame mesh in space and time where the topologi-
cal transition takes place [Takahashi et al. 2001]. The key-frame mesh binds two surfaces
of differing topologies through a pair of faces, each of which is homeomorphic to one
of the two surfaces. A correspondence is established between each source mesh and the
key-frame mesh using the method of [Ohbuchi et al. 2001].

Most of the above mesh-based methods cannot handle changes in topology in a shape
transformation, and user input is required in order to help find a mapping between surfaces.
In contrast to this, none of the implicit morphing methods require user input, although
some allow user intervention to improve the results. The method we present can transfer
texture for any morphing method including parametric methods, but is especially useful
for implicit morphs that lack a parameterization.

2.2 Implicit Shape Transformation
A wide variety of approaches to performing shape transformation using implicit functions
have been published in the graphics literature. These methods require little user-input and
are able to handle changes in topology without user intervention.

Brian Wyvill describes shape morphing as interpolation between corresponding pairs of
two blobby implicit models [Wyvill 1997]. Hughes transforms discrete implicit represen-
tations of two shapes into the frequency domain and performs a “scheduled” interpolation
between the shapes, fading out the high frequencies first [Hughes 1992]. Payne and Toga
use linear interpolation between signed distance transforms of the two shapes to produce
smooth morphs [Payne and Toga 1992]. At any point in time, the intermediate shape is the
zero level-set of the interpolated distance function. Cohen-Or et al. add user control to this
process by allowing spatial deformations that better align the shapes, and the results are
superior to those created using non-deformed shapes [Cohen-Or et al. 1997].

In [He et al. 1994], a wavelet transform is used to perform shape morphing. Volumetric
data sets are decomposed into a set of frequency bands that are interpolated separately and
recombined to form the intermediate models. Before the wavelet transform is performed,
the authors first establish a correspondence between voxels of the discretized implicit sur-
face representations by distributing the components of the first object as evenly as possible
onto the second object. Although their approach generates an explicit mapping between
the source and target shapes, the correspondences depend only on one dimensional length,
not area or curvature, even for surfaces, and it often assigns multiple voxels of one model
to a single voxel of the other model.

Breen and Whitaker present a level-set approach for producing shape transformations
in [Breen and Whitaker 2001]. They move their level-set according to the value of the
signed distance transform of the target shape. Regions of the source shape that are outside
of the target shape contract, while regions inside expand. Surface colors are interpolated
for intermediate shapes using color volumes [Breen and Mauch 1999; 2000]. Although
these color volumes do map a surface point of an intermediate shape with surface points
of the source and target shapes, the associations are based purely on closest points – a
surface point on the target shape is mapped to the closest point on the source shape. Such
a mapping is not unique and may not be bijective.

Turk and O’Brien use a 4D generalization of thin-plate splines to perform shape trans-
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formation [Turk and O’Brien 1999]. They represent the implicit function for the morph as
a weighted sum of radial basis functions, where the weights are found by solving a matrix
equation. Thin-plate deformation is provided as a control mechanism for users.

All of the above implicit morphing methods allow topological changes to occur during
the morphs, but do not construct a correspondence between the surfaces of the source and
target shapes ( [He et al. 1994] create voxel, not surface, correspondences). In our work,
we use either of two different shape transformation algorithms – distance field interpola-
tion [Payne and Toga 1992] and variational implicit transformations [Turk and O’Brien
1999] – to generate an implicit morph that may include topological changes. We then
construct an explicit mapping between the shapes in the implicit morph.

2.3 Texture Mapping
Because we will demonstrate our technique on the transfer of texture between surfaces,
texture mapping is a closely related topic. In particular, we review work that has been
published in the area of texture mapping implicit surfaces. We also review different criteria
and metrics used in texture mapping.

2.3.1 Texture Mapping Implicit Surfaces. Pedersen presents an interactive method to
texture implicit surfaces. He divides an implicit surface into patches using smooth geodesic
curves constructed between user specified points on the surface [Pedersen 1995]. Iso-
parametric curves are computed automatically for each patch in a two step process with
similarities to our own approach. The first step is the creation of a vector field across the
patch representing the orthogonal directions of a 2D texture. The second step aligns the
iso-parametric curves to the vector field computed in the first step. Though his motivations
for this two step process are similar to ours, the details of the two steps (energy that is
minimized, dimension, and discretization) are completely different from our method.

Zonenschein et al. [Zonenschein et al. 1997; 1998a] texture map an implicit surface by
generating an explicit mapping between the implicit surface and a support surface that can
be described both implicitly and parametrically, such as a sphere or cylinder. They create
the mapping using a particle system. Particles are initialized on the implicit surface and
move toward the support surface under the influence of a force defined by the gradients of
the implicit functions (both the support surface and the surface being textured). In [Zonen-
schein et al. 1998b], they extend this method to composite implicit shapes that can deform
using multiple support surfaces. Tigges and Wyvill increase the flexibility of the algorithm
by using skeletons as the support structure instead of a surface [Tigges and Wyvil 1999].
The above approach is Lagrangian, and hence is susceptible to the disadvantages of La-
grangian methods, such as sensitivity to the time step governing the particles’ movement
and the need to maintain a uniform sampling of particles. Instead, we present a completely
automatic, Eulerian approach that operates on a mesh, and is thus independent of particles.

In [Benson and Davis 2002; Debry et al. 2002], the authors construct an octree that
spans the surface of the model and is indexed by the three dimensional coordinates of the
model. The octree’s leaf nodes contain color samples forming the texture, and the model’s
texture coordinates are the same as its vertex coordinates. The texture stored in the octree
is generated by 3D painting programs, requiring significant user input.

2.3.2 Minimizing Distortions in Texture Mapping. An important metric used to mea-
sure the quality of a texture map is the amount by which the 2D domain is distorted over
the textured surface. Distortions include the stretching, compressing, or skewing of the
2D image. Pioneering work in non-distorted texture mapping include that of Bennis et
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al. in surface flattening [Bennis et al. 1991] and Maillot et al. in interactive texture map-
ping [Maillot et al. 1993]. Another frequently referenced work is that of Floater in which he
develops a method to compute the parametric coordinates for a surface point as the convex
combination of neighboring points [Floater 1997]. This produces a barycentric mapping
of the interior surface point such that the parameterization mimics chord length between
the surface points, thereby minimizing distortion. In [Levy and Mallet 1998], Levy and
Mallet obtain texture coordinates for a triangulated mesh by iteratively minimizing a dis-
tortion criteria that includes perpendicularity and constant spacing of the parametric curves
defining the texture mapping. Haker et al. construct a conformal mapping that is angle pre-
serving and changes distance and areas only by a scaling factor [Haker et al. 2000]. They
obtain the mapping through solving a PDE formulated as a system of linear equations.
Additional work in texture mapping include constrained texture mapping [Levy 2001],
creating texture atlases using conformal mapping [Levy et al. 2002], and parameterization
of polygonal models [Sheffer and de Sturler 2001] that minimize distortion.

In our work, we use a geometric texture stretch metric introduced by Sander et al.. This
metric measures the largest and smallest length obtained when mapping a unit length vec-
tor from the texture domain to the surface [Sander et al. 2001]. They define two stretch
norms – the worst-case and root-mean-square stretch. The worst-case stretch is the max-
imum stretch over the entire surface, while the root-mean-square stretch combines both
the largest and smallest stretch lengths into one value. Sander et al. minimize both met-
rics iteratively by changing the texture coordinate of each vertex while all others are held
fixed. In Section 9, we use stretch norms to verify the quality of the texture mapping gen-
erated from our explicit correspondences. A useful survey of stretch metrics can be found
in [Zhang et al. 2003] where they combine Sander’s area-preserving metric with conformal
preservation using the Green-Lagrange tensor.

3. TERMINOLOGY
In this paper we will use the term mapping as a shorthand for an isomorphism between
surfaces. An isoomorphism is a mapping function F from one surface A to another surface
B that is bijective. When a mapping is a isoomorphism, the function F defines a unique
point F(p) on B to each point p on A, and it also gives a unique point F −1(q) on A for any
point q on B. That is, a point on either of the surfaces is put into correspondence with a
unique point on the other surface.

In the case where two surface have different topologies it is impossible to create a iso-
morphism. For the examples in this paper, it is possible to remove a set of measure zero
(infinitesimally small) from each surface and define an isomorphism between the remain-
ing portions of the surface. We conjecture that this will always be possible, but we do not
have a proof. As an example, consider a morph from a sphere to a torus that is made by
pinching the north and south poles together. If we remove the north and south poles of the
sphere and an infinitely thin band around the torus hole, we are left with two surfaces that
are topologically equivalent. An isomorphism can be created for these two modified sur-
faces. This is the form of the solution that our method produces in the case of surfaces with
different topologies, although we do not actually have to remove points from the surfaces.

4. EULERIAN CORRESPONDENCE TRAJECTORIES
Our method for creating a mapping was inspired by a mathematical approach for com-
puting the thickness of regions with two distinct boundaries using a pair of linear partial
differential equations. This approach was first used for computing tissue thickness on rect-
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angular grids [Yezzi and Prince 2001]. In this paper we generalize the method to polyhe-
dral grids in order to compute correspondences between boundaries of triangular surfaces
and tetrahedral volumes (contours and surfaces). Specifically, we use a simple linear PDE
to generate trajectories from one boundary to another, and a second linear PDE to trans-
port information along these trajectories using only the structure of the original grid (i.e.,
without “particle tracing” along the trajectories). In our algorithm, both PDEs are ap-
plied discretely to an n manifold in n + 1 dimensions, rather than to the Cartesian grid as
in [Yezzi and Prince 2001]. For creating correspondences between 2D contours morphing
in time, we apply the PDEs to vertices of a triangular mesh extracted from the implicit
transformation defined in 2D space and time. For morphing 3D shapes, we apply the PDEs
to a tetrahedral mesh (3D manifold) spanning 3D space and time.

The first step in our approach is to build a scalar field s on the grid whose gradient
forms a vector field T defining flow lines that run bijectively between the source and target
boundaries of the grid. This may be done by solving Laplace’s equation (∆s = 0) with
boundary conditions of 0 and 1 on the source and target boundaries respectively. The flow
lines run bijectively between the source and target because the solution of the Laplacian
takes on maximum and minimum values only at the boundaries. Hence, the flow lines will
terminate only at the boundaries which, in our case, are the source and target shapes. The
next step involves solving a second PDE which describes the differential structure of some
other function along these trajectories. In [Yezzi and Prince 2001], this function was the
arclength of the trajectories (used to define the thickness between the two boundaries).

To create surface mappings we use the same two step PDE-based procedure, but make
two changes. First, we apply the scheme on triangulated and tetrahedral meshes of non-flat
domains and therefore substitute the Laplacian operator with the more general Laplace-
Beltrami operator in the first PDE [Pinkall and Polthier 1993]. Second, we are not inter-
ested in the lengths of the correspondence trajectories but are instead interested in their
endpoints. These give us the pointwise correspondences between the two boundaries. As
such, the second transport PDE dictates that the derivative of the correspondence vector
field (which we call labels L) along the gradient of s is zero:

∇L ·T = 0 where T =
∇s

‖∇s‖ . (1)

Note that both the first and second PDE’s can be solved via computations on the n
manifold (triangular or tetrahedral mesh). In other words, the scalar field s and vector fields
T and L are computed at each vertex in the mesh using only information from neighboring
vertices. This Eulerian framework avoids the complexities of tracing particles along the
trajectories embedded intrinsically within the solution of the first PDE. Figure 2 diagrams
the steps involved. After discussing mesh creation, we show how these PDE’s can be
solved on arbitrary meshes.

5. CREATING THE HYPERSURFACE
Because we are solving the problem of transferring textures during an implicit shape trans-
formation, we first review the implicit morphing algorithms we use. For the case of mor-
phing between 3D surfaces, the implicit transformation is described as a scalar function
over R4. In order to discretely solve the two PDE’s that will create the mapping, we need
to extract an explicit representation – a mesh – of the morph. In this section we briefly
describe how we generate the implicit morph and the tetrahedral mesh.

Our approach to creating mappings between surfaces can use any implicit method that
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creates a morph, including [Wyvill 1997; Hughes 1992; Payne and Toga 1992; He et al.
1994; Cohen-Or et al. 1997; Turk and O’Brien 1999; Breen and Whitaker 2001]. To
show that our method is independent of the implicit transformation scheme, we use two
different morphing algorithms – distance field interpolation [Payne and Toga 1992] and the
variational implicit method [Turk and O’Brien 1999]. We give a sketch of each approach
below. We refer the interested reader to the original papers for details.

Payne and Toga construct a shape transformation between two shapes by cross-dissolving
the distance fields of the two shapes, resulting in a linear interpolation described by the fol-
lowing equation [Payne and Toga 1992]:

d(x) = (1− t)∗ dA(x)+ t ∗ dB(x) (2)

In the above equation, d(x) is the interpolated distance, t is time, d A is the distance
transform for the source shape A, and dB is the distance transform for the target shape B.
At any particular time slice, d is an implicit function describing the shape. At t = 0, d is
completely defined by the source A, and at t = 1, d is completely defined by the target B.
Intermediate shapes are extracted where d evaluates to zero.

The variational approach to shape transformation creates an implicit function in 4D that
is a weighted sum of thin-plate radial basis functions:

G(x) = P(x)+
n

∑
i=1

wiφ(|x− ci|) (3)

In the above equation, G(x) is an implicit function that evaluates to zero on the surface,
negatively outside, and positively inside; φ is a radially symmetric basis function; n is the
number of basis; ci are the centers of the basis functions; and wi are the weights for the basis
functions. The term P(x) is a linear polynomial. The basis functions are created in two
places: on the surface of the shape and near the surface in a direction given by the surface
normal. Because we are defining a 4D function over (x,y,z, t), all of the basis functions for
the source shape A are placed in the sub-space t = 0, and the basis functions for shape B
are placed at t = 1. The weights of the basis functions are determined by solving a matrix
equation. Once the weights have been found, we have a 4D implicit function (Equation 3)
that describes the entire shape transformation. In Section 9.1, we discuss how the different
morphing algorithms affect the mapping generated between the shapes.

In order to solve PDEs on the 4D implicit function that describes the shape transforma-
tion, we first extract a tetrahedral mesh spanning 3D space and time. We use a variant of
the Marching Cubes method that has been generalized to higher dimensions [Bhaniramka
et al. 2000]. In 3D, the Marching Cubes method extracts an iso-surface from an implicit
function by dividing the space spanned by the surface into cubes. The implicit function is
evaluated at each vertex, and the configuration of positive and negative values indexes into
a case table that provides the triangulation within the cube. In 4D, instead of cubes, the
space is divided into hypercubes that span (x,y,z, t), resulting in 65,536 possible combina-
tions. Bhaniramka et al. present a method to automatically enumerate all the possible cases
for n dimensions. Once the case table is constructed, iso-surfacing in higher dimensions is
conducted in the same manner as Marching Cubes in 3D. With a tetrahedral mesh in hand,
we can now turn to the task of solving the PDE’s over the mesh.
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6. VECTOR FIELD CREATION

6.1 First PDE: Constructing a Mapping by Solving Laplace’s Equation
The purpose for solving the first PDE is to obtain a vector field, T, that indicates how points
on the first surface flow to the second surface. We define T as the gradient of a scalar field s
that we initialize as follows: s = 0 at the source shape A, s = 1 at the target shape B, and s is
interpolated in between A and B. We then solve Laplace’s equation (∆s = 0) to smooth out
the values. In Figure 2b, the surface spanning 2D space and time is colored by the value
of s (black at t=0.0 and white at t=1.0). By solving Laplace’s equation, we are performing
diffusion which minimizes the integral of the scalar field’s gradient. Following the char-
acteristic curves of the diffused scalar field generates correspondence trajectories that are
uniformly spread throughout the transformation space. Trajectories flow over protrusions
(or into concavities) rather than around them and never intersect. Solving the first PDE
produces a unique harmonic function s over the space that interpolates between 0 along the
source shape and 1 along the target shape.

The value of ∆s for a function s on a manifold depends upon two factors – the function s
and the local coordinates used to discretize the manifold. To make the value of ∆s depend
exclusively upon the geometry of the manifold rather than the choice of local coordinates,
we use the generalization of the Laplacian from flat spaces to manifolds known as the
Laplace-Beltrami operator. Evaluation of the Laplace-Beltrami operator yields a result
equivalent to the evaluation of the standard Laplacian in the special case that the local
coordinates of the manifold are chosen geometrically to yield mutually orthogonal curves
each with unit speed (i.e., parameterized by arclength). By solving Laplace’s equation
using the Laplace-Beltrami operator, we are performing geometric heat diffusion on our
tetrahedral mesh. We note that Bertalmio et al. and Memoli et al. have devised a method
for evaluating this operator over a thin slice of the Cartesian grid that surrounds an implicit
surface [Bertalmio et al. 2001; Memoli et al. 2002], and this is a reasonable alternative
to our own approach. The Laplace-Beltrami operator for triangulated meshes and for 3-
manifolds in n dimensions is given below [Pinkall and Polthier 1993; Meyer et al. 2001].

�
Ω

K(s)dΩ =
1
2 ∑

j∈N(i)
(cotαi j + cotβi j)(si − s j) (4)

In the above equation, the region of interest Ω is a surface for a triangulated mesh and
a volume for a tetrahedral mesh. N(i) is the 1-ring neighboring vertices of i. For a trian-
gulated mesh, αi j and βi j are the two angles opposite to the edge (i, j). For a tetrahedral
mesh, αi j and βi j are the dihedral angles opposite to edge (i, j) (note that there are generally
more than two dihedral angles for any edge in a tetrahedral mesh). We apply the Laplace-
Beltrami operator to the mesh until convergence of the scalar field – the total change in the
scalar values is below a desired threshold. The runtime is on the order of a few seconds
to several minutes depending on the mesh resolution. Alternately, we can apply implicit
integration and directly solve for s using conjugate gradient as prescribed in [Desbrun et al.
1999]. As expected, fewer iterations are required to generate similar results, but each itera-
tion takes longer (see Section 9 for runtimes). The final tangent vector field, T, is obtained
by taking the gradient of s, which we describe in the next section.

6.2 Tangent Field Calculation
Once we have the scalar field s, we construct the tangent vector field T by calculating the
gradient, ∇s = ∂s/∂x where x = (x,y,z, t), throughout mesh. For each vertex i, the tangent
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vector Ti is calculated by weighted averaging (based on tetrahedra volume) of the gradi-
ents of s in the tetrahedra that are in the 1-ring neighborhood of the vertex. Within each
tetrahedron, we solve the following system to obtain the gradient of s, where (x i,yi,zi, ti)
is the 4D coordinates of vertex i in the tetrahedron, and s i is the vertex’s scalar value.

⎡
⎢⎢⎣

x1 y1 z1 t1
x2 y2 z2 t2
x3 y3 z3 t3
x4 y4 z4 t4

⎤
⎥⎥⎦

⎡
⎢⎢⎣

∂s/∂x
∂s/∂y
∂s/∂z
∂s/∂t

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

s1

s2

s3

s4

⎤
⎥⎥⎦ (5)

Fig. 4. Sphere to Stanford Bunny transformation – a morph between two shapes with a common topology. A
texture of the Earth is transferred from the sphere to the Stanford Bunny using the explicit mapping between
implicit surfaces generated by our approach.

6.3 Discussion

Fig. 5. Above: Checkerboard pattern is mapped onto the Bunny using the texture coordinates transferred from
the sphere. Below: The Bunny is shaded according to the amount of texture stretch. Red indicates high stretch
or compression. Black indicates minimal stretching and compression. Left to right: Results after 1, 10, and 100
iterations of geometric heat diffusion, and after 3 iterations of diffusion using implicit integration.

Tech Report 2004-7, Department of Computer Science, Stevens Institute of Technology



12 · H. Q. Dinh et al.

Diffusion Convergence Time Min Max Mean Variance
Iterations (secs.) (Compression) (Stretch)

1 0.010904 9 0.012069 99.790815 1.787130 7.618893
10 0.001187 9 0.139142 51.168358 1.613149 2.476958
100 0.000204 16 0.162943 19.135322 1.507618 1.112487

3 Implicit 0.000037 16 0.151568 26.397383 1.549555 1.455317

Table I. Measure of Stretch in Sphere to Stanford Bunny Morph

Why solve a PDE in order to create our vector field? As described in Section 6.1, the
initial scalar field s is such that s = 0 at the source shape A, s = 1 at the target shape
B, and linearly interpolate in between according to the t coordinate. Without diffusion,
the gradient of this scalar field is still a vector field that flows from shape A to shape
B. Propagating a particle along this field in the 4D transformation space is analogous
to moving the particle in the direction of maximum change in time. Unfortunately, such
a simple field may not uniformly distribute the particles as they are propagated in time.
Instead, trajectories describing corresponding points can spread too far apart or compress
together too closely as shown in Figure 5. Pedersen also describes this problem to motivate
his two step approach for generating iso-parametric curves within a patch [Pedersen 1995].
The method we described in Section 6.1 overcomes the problem by applying geometric
heat diffusion to s which smooths out the scalar field.

One way to visualize the spread or compression of trajectories is to measure how a tex-
ture that has been transferred from A to B is stretched or compressed. In [Sander et al.
2001], the authors develop a texture stretch metric to compute the largest and smallest
lengths to which a unit-length vector in the texture domain gets mapped to the surface.
The worst-case norm is the maximum texture stretch over the surface. Stretch values be-
low 1.0 indicate compression of the texture. When there is no distortion of the texture,
the max and min stretch lengths are 1.0. In Figure 5, we have applied this metric to the
sphere to Stanford Bunny transformation (shown in Figure 4) while varying the number of
iterations of geometric heat diffusion. We have also compared the iterative (Gauss-Siedel)
method to implicit integration. Fewer iterations of implicit integration are required to reach
convergence, but at a cost of solving a linear system, requiring more computation per itera-
tion. No distortion is assumed for the sphere, so the amount of texture stretch on the Bunny
is relative to the sphere. The results show that the areas of texture stretch are reduced as
more iterations of diffusion are applied. Only 3 implicit integration steps are required to
obtain results comparable to 100 forward Euler steps. We have used a regular checkerboard
pattern to show the distortion of the texture. Table I shows that, quantitatively, measures of
stretch across the surface improves with diffusion – the max, min, and mean stretch lengths
improve (progress towards 1.0), and the variance in stretch is reduced.

7. SECOND PDE: LABEL PROPAGATION
Recall that the tangent vector field, T, indicates how points on the source surface flow to
the target surface. We determine a complete correspondence between the source and target
shapes by propagating position labels, L, from the source shape to the target shape along
characteristic curves defined by the vector field (shown as red lines in Figure 2b). The
label L is simply a position on the first shape that we wish to pass along to the second
shape. For 2D contour mapping, the labels are 2D positions L = (x,y), while for 3D shape
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Fig. 6. The upwind direction, specified by −T, intersects one triangle in the star of vertex V0 in (a) and intersects
the tetrahedron in (b). (a) Vertices V1 and V2 are the upwind neighbors used in determining the label values of V0.
(b) Vertices V1, V2, and V3 are the upwind neighbors used in determining the label values of V0. In both cases, the
label of V0 is computed to satisfy Equation 6.

morphing, they are 3D positions L = (x,y,z). The purpose of the second PDE is to “push”
these position labels across the mesh from shape A to shape B. Labels are only assigned
to vertices p = (px, py, pz) of the first shape A, and for these initially labeled vertices,
L(p) = (px, py, pz). Once the labels have been propagated, each point on the target shape
maps to the point on the source shape with the corresponding label.

One method of propagating the labels without solving a PDE is to treat each label as a
particle and trace its path as it moves along T, from the source to the target shape. Particle
tracing is, however, compute intensive since particles must be moved in small steps to
closely follow the characteristic curve. In addition, particles must be created and destroyed
in order to maintain a consistent particle sampling. We avoid particle tracing and propagate
labels more robustly by solving a second PDE over the mesh:

∇L ·T = 0 (6)

This equation states that the direction of maximum change of L should be perpendicular
to the vector field T. By solving the above PDE, the resulting values for the label, L, does
not change along the characteristic curves described by the vector field, T. In other words,
L is constant along a trajectory. The characteristic curve drawn out by an iso-contour of L
maps a point from the source shape to a point on the target shape.

7.1 Solving the PDE on a Tetrahedral Mesh
When solving the PDE of Equation 6 it is important to use a numerical scheme which
respects the fact that information flows exactly along the characteristic curves (i.e., the
correspondence trajectories). Central differencing schemes are not appropriate because
they use information from all directions around a given vertex rather than exclusively from
directions aligned with the characteristic curves flowing through a local neighborhood of
the vertex. Instead, we devise an upwind differencing scheme that exploits the fact that the
appropriate upwind neighboring vertices can be determined from the tangent field T. Only
these vertices and the current vertex should then be used to approximate the gradient of L
when numerically solving Equation 6.

On a flat rectangular grid, the upwind neighbors are easy to determine. The upwind
neighbor to a given grid point in the x-direction is the grid point to the left if the x-
component of −T is negative, and to the right otherwise. The upwind neighbors are sim-
ilarly determined in the other Cartesian directions, and ∇L can then be computed using
one-sided difference approximations. Based upon this approximation, the transport equa-
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tion (6) yields a linear equation that can be used to solve for L at each grid point. This forms
the basis of an iterative procedure that is applied at each grid point until convergence.

On a more complicated mesh, such as a triangular or tetrahedral surface, we determine
the upwind neighbors of a particular vertex by projecting the vertices of the triangles (or
tetrahedra) in the star around that vertex onto the tangent plane where T resides. Note that
the tangent plane is computed by weighted averaging of the normal vector of the triangles
(or tetrahedra) in the star of the vertex. The upwind vertices are those of the projected
triangle (or tetrahedron) that intersects −T, as shown in Figure 6a and 6b .

After the labels have been propagated using upwinding on the mesh, every vertex of the
second object has a label L that corresponds to a location on the first object. These labels
define our mapping from one surface to another. We may now make use of this mapping
to perform operations such as texture transfer.

8. TOPOLOGY CHANGES AND TEXTURE SEAMS
Once a mapping between surfaces has been created, it can be put to a number of uses. In
this paper we demonstrate its use in transferring texture between surfaces. When perform-
ing texture transfer, two kinds of seams must be handled: topological seams and texture
seams. In this section we describe how we treat both of these issues.

8.1 Topological Seams
When surfaces with different topologies morph from one to the other, critical points arise
at the transition between topologies. For example, when a sphere transforms into a torus,
a hole appears during the transformation (see Figure 7a). The point in 4D at which this
hole appears is the critical point. At this junction, labels from opposite poles of the sphere
come together and form a topological seam. The resulting seam sits at the inner ring
of the torus. On one side of the seam, all the points along the inner ring of the torus
correspond to one pole of the sphere, while on the other side all the points correspond to the
opposite pole. Since we need to interpolate a sparse field of labels, we need to be careful of
interpolated labels that could potentially correspond to points between the two poles. Such
a label would be erroneous because it is not near the set of labels assigned to the source
shape. We prevent incorrect interpolations by explicitly creating a seam in the triangulation
corresponding to the topological seam. Labels are then never interpolated across the seam.
Figure 7b shows the topological seam in the sphere to torus transformation.

The topological change in the sphere to torus morph is an example of hole creation.
There are eight different topology changes that may occur [Stander and Hart 1997], and
these may be grouped into two categories. The first category consists of hole creation / de-
struction and object merging / splitting. The second category consists of object creation /
destruction and bubble creation / destruction. Creation and destruction of objects and bub-
bles do not give rise to a topological seam because whole components appear or disappear.
Hole creation and destruction must be treated explicitly, and object merging and splitting
may be handled in exactly the same manner. Figure 9 is an example of object splitting.

The topological seam need not be embedded in the tetrahedralization, since the seams
need to be handled only at the desired time slice. We chose to explicitly create the topolog-
ical seam at the target shape B by identifying all triangles on B that span a large distance
in label space. The labels assigned to the vertices of a triangle are compared. If they are
very far apart (farther than a few marching tetrahedra steps), then the triangle spans a topo-
logical seam and must be split. The distance between label values in a triangle where a
topological seam occurs tends to be large. For example, in the sphere to torus transforma-
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(a)

Fig. 7. (a) Sphere to torus transformation – a morph between two shapes of different topologies, involving a
hole creation. A texture of Cezanne’s Gardanne is transferred from the sphere to the torus. (b) Topological
seam at the inner ring of the torus. (c) A triangle (red) of the target surface is split by the critical plane (green)
embedded in the tetrahedron (blue line shows the split). The tetrahedron spans a topological seam with labels LS
that correspond to points near one pole and LN that corresponds to a point near the other pole.

tion of Figure 7a, labels at the inner ring of the torus come from the two poles of the sphere.
Triangles will either span very small distances in label space (indicating no seam), or very
large distances (indicating a seam). There is little ambiguity in the classification. Hence,
the distance threshold used to determine if a topological seam exists is easy to choose and
is not sensitive to minor differences in the size of tetrahedra or triangles in the mesh.

Triangles can be split along the midpoint of edges that span a topological seam, but this
would result in a jagged seam. Instead, we split a triangle using the tetrahedron from which
it came. Like the triangle, the tetrahedron also spans a topological seam. We assume that
the critical plane traced out by the critical point passes through the midpoints of edges that
span the topological seam in the incident tetrahedron. The triangle extracted at the desired
time slice is split by intersecting it with the critical plane. Figure 7c shows how the critical
plane and the extracted triangle interact within a tetrahedron that spans the topological
seam. The labels LS correspond to distinct points near one pole, while LN correspond to a
point near the other pole. Our approach produces a smooth seam because the critical plane
is coherent from one tetrahedron to the next along the topological seam. Once an explicit
topological seam is constructed in the mesh of the target shape, the labels are assigned to
correspond to one pole on one side of the seam and to the other pole on the other side of
the seam. Thus, labels are never interpolated across seams. Figure 7b shows the smooth
topological seam generated by this method. A topologically more complex example is
shown in Figure 3.
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Triangles of Shape A
Triangles of Shape B

Fig. 8. (a) A texture seam is generated by intersecting triangles of the target shape B with the texture seam of
the source shape A. (b) Dashed lines show how triangles of B that are incident to the texture seam are split and
retriangulated. (c) The texture seam transferred from the sphere onto the torus.

8.2 Texture Seams
We can transfer texture from the source shape A to the target shape B via texture coordi-
nates. The propagated labels represent an explicit mapping, and we use this mapping to
directly transfer texture coordinates from A to B. Note that this method can also be used to
transfer other surface properties, such as color, normal vectors, and wavelet coefficients.

Texture seams are present on a textured object when a single texture patch wraps back on
itself or when two different textures abut one another. Because we use a sparse distribution
of labels (only at the mesh vertices), the texture seam is not explicitly transferred. As a
result, the texture coordinates of some triangles on the target surface B could potentially
span a texture seam, causing a large portion of the texture to be incorrectly squeezed into
the space of one triangle. To prevent this from occurring, we split the triangle along the
texture seam so that the seam is explicitly defined on B. We first identify all triangles in
B whose texture coordinates span a large distance in texture space. As with topological
seams, this distance is quite large. Hence, the distance threshold used to identify a texture
seam is not sensitive to minor differences in triangle or tetrahedra size. All triangles tagged
as spanning a texture seam are then subdivided using seam edges from surface A in texture
space as shown in Figure 8. Note that it is necessary to split the tagged triangles in texture
space (s,t), and then map the new vertices generated by the splitting back into spatial
coordinates (x,y,z) using barycentric coordinates. Figure 8c shows the correct handling of
a texture seam when texture is transferred from one object to another.

9. RESULTS
We have created mappings between a variety of 3D surfaces using our PDE-based ap-
proach. In order to illustrate these mappings we show texture being transferred from one
model to another. For each example, intermediate models from the morph are created by
slicing the 4D tetrahedral mesh with a hyperplane at various t values. Each slice gives the
collection of triangles, which we then texture using the mapping information.

Figure 4 shows a morph between two models of a common genus – a bunny and a sphere.
Figure 7a and 9 are examples where the genus changes. These morphs were generated
using Turk and O’Brien’s variational implicit method. In Figures 3 and 10, we have used
Payne and Toga’s distance field interpolation algorithm. Note that we have used spatial
warping using thin-plate radial basis functions as described in [Cohen-Or et al. 1997] to
constrain the cow to horse morph so that the nose of the cow morphs into that of the horse.
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Fig. 9. One sphere splitting into two – a morph involving object splitting. The two poles of the original Earth
merge to form monopoles in each of the new spheres.

All of these mappings were produced entirely automatically – no user intervention was
required to define the mappings, even in the case of genus changes. The running times
to create the mappings are reasonable. Table II gives the solution times for both PDE’s.
All of the PDE solutions are on the order of minutes for even our largest models. Note
that the cow to horse transformation obtained using distance field interpolation required
few iterations (we were unable to use implicit integration for this morph and the Sphere
to Buddha morph due to memory limitations). In the next section, we discuss how the
implicit transformation that is used affects the mapping that we generate.

Morph Tetrahedra Time Diffusion Implicit Integration Label Prop.
Count Steps (iters.,secs.,conv.) (iters.,secs,conv.) (iters.,secs.)

Sphere to Torus 219998 10 469, 24, 0.00001 2, 11, 0.0 5, 3
Sphere to Bunny 416747 6 535, 46, 0.00001 3, 16, 0.000037 7, 10
Splitting Sphere 858006 10 824, 159, 0.00001 3, 21, 0.000010 6, 13

Sphere to Buddha 1360634 10 93, 61, 0.00012 - 6, 25
Cow to Horse 1692940 10 7, 41, 0.00250 - 10, 50

Table II. Execution statistics (iterations, time, and convergence) on an PC with a 2 GHz AMD processor.

9.1 Comparing Results from Distance Field and Variational Implicit Morphs
Because our mapping algorithm is intended for application to implicit shape transformation
methods, it is important to examine the affect that the transformation algorithm has on the
results. The tetrahedral mesh that is extracted from the implicit morph differs depending on
the shape transformation algorithm that is used. The primary difference between the two
algorithms we have used (distance field [Payne and Toga 1992] and variational implicit
morphs [Turk and O’Brien 1999]) is that the variational implicit morph (VIM) minimizes
thin-plate energy, where as the distance field morph (DFM) is a linear transformation that
minimizes length (or membrane energy). The result is that the trajectory from a source to
an target point in the VIM is smoother, while in the DFM, the trajectory is more direct and
minimal in distance. We show this difference in Figure 11 by extracting a spatial slice of
the torus to sphere transformation. This hyper-slice shows the (y,z, t) surface at x = 0.0.
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(b)

(c)(a)

Fig. 10. The transformation from a cow to a horse. (a) The texture from the cow is transferred to the horse model.
(b) A checkerboard pattern shows how the mapping smoothly deforms the texture from the cow to the horse. (c)
Rings of color identify what parts of the cow are mapped to the horse.
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1 Iteration

Sphere (t=1.0)Sphere (t=1.0)

Torus (t=0.0)Torus (t=0.0)

Distance Field Morph

(a) (b)

100 Iterations

(c)

Variational Implicit Morph

Sphere (t=1.0)Sphere (t=1.0)

Torus (t=0.0)Torus (t=0.0)

Fig. 11. x = 0.0 slice of the torus to sphere transformation. The surface is colored according to surface normal.
Side (a) and oblique (b) views of the hyper-slice show that the VIM is smoother but has more surface area than
the DFM. (e) Texture mapping results from DFM and VIM using texture coordinates transferred from the torus
to the sphere.

At t = 0, the contour is a 2D slice of the torus with two small circles forming the torus ring.
At t = 1, the contour is a 2D slice of the sphere, comprising one large circle. The top-left
row is the x = 0.0 slice of the DFM. The bottom-left row is the same slice of the VIM. The
corresponding texture mapping results are shown in the right panels of Figure 11. Note that
we show only the resulting texture mapping at the sphere (target shape). Remarkably, the
shape transformation generated by DFM required little diffusion to obtain similar results.
This is because the DFM generates more direct trajectories as described above, and so
does not require much diffusion to uniformly spread the trajectories over curved regions
between the source and target surfaces.

Although DFM is successful in this example, DFM is sensitive to scale and resolution
due to its discrete nature. DFM tends to generate a higher percentage of obtuse dihedral an-
gles with larger obtuse angles that can cause the diffusion to become unstable. In contrast,
VIM is less sensitive to the spatial or temporal resolution used to generate the tetrahedral
mesh because VIM is an analytical representation of the morph and generates a smoother
morph. We speculate that the difference in the quality of the meshes between DFM and
VIM is due to the difference in smoothness and the discrete versus continuous nature of
the transformation algorithms. The key advantage of DFM over VIM is its simplicity. We
are able to create complex transformations using DFM in Figures 3 and 10.

10. FUTURE WORK
We have presented an automated method to create a smooth and uniform mapping from one
surface to another in an implicit morph. Although the method is largely successful, issues
remain that would improve the stability and practicality of the method. These include the
quality of the tetrahedral mesh and the ability to control the resulting explicit mappings.
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(a) (b) (c)

Fig. 12. 2D example of controlling the mapping from a circle at the bottom to another circle at the top (note that
another circular constraint was defined in the middle, causing the slight dip). (a) Trajectories overlayed on the
surface show the mapping. Repulsive (b) and attractive (c) forces were introduced in a small region at the top.

(a) (c)(b)

Fig. 13. 3D example of controlling the mapping from one sphere splitting into two. Note that only the target
pair of spheres is shown. (a) Attractive forces applied to the right hemisphere of the right sphere pulls the texture
towards the right side. (b) View of left side of the left sphere where no forces were applied. (c) View of right
side of the right sphere where attractive forces were applied. More checkers appear in (c) because the texture
gravitated towards the right side due to the controlling forces. Without any forces, (c) would be identical to (b).

10.1 Mesh Quality
Obtuse dihedral angles can introduce instability into the diffusion process. The reason for
this is evident in Equation 6.1 for the Laplace-Beltrami operator. The updated value s i at
vertex i is a convex combination of neighboring values only when the dihedral angles are
acute. Obtuse dihedral angles generate negative weights that introduce instability into the
diffusion process. The need for acute triangulations (in our case, tetrahedralizations) is
well documented in the literature on solving PDEs on triangulations [Pinkall and Polthier
1993; Kimmel and Sethian 1998; Meyer et al. 2001]. Although there are algorithms for
acute triangulation of surfaces, we have found no algorithm for partitioning an arbitrary
polyhedral domain into acute tetrahedra. Only recently has there been a method for acute
refinement of arbitrary tetrahedral meshes (note that acute refinement differs from algo-
rithms for acute tiling of 3D space [Üngör 2001]). In [Plaza and Rivara 2001], the authors
describe a mesh refinement algorithm based on the partitioning of each tetrahedron into 8
tetrahedra with the first bisection performed on the longest edge. A key property of their
method is that for each obtuse face of a tetrahedron, all new faces that are created from par-
titioning are of better quality than the parent face. This property implies that obtuse angles
are reduced after each partitioning, but does not give a bound on the number of iterations
required to remove all obtuse angles, nor is a bound provided on the number of tetrahedra
that may be generated from partitioning one obtuse tetrahedron. Hence, this algorithm is
likely to produce a large number of tetrahedra in the refinement process.

10.2 Controlling the Mapping
The approach we have presented automatically generates a mapping between surfaces in
a shape transformation. It is often desirable, however, to have control over the mapping.
For example, in the splitting spheres transformation, we may want to decompress the tex-
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ture that is stretched out over the left and right hemispheres of the resulting sphere pair.
In [Zonenschein et al. 1998a], Zonenschein et al. introduce a number of methods for con-
trolling the texture mapping of implicit surfaces that can also be applied here. One of
these methods uses attractive and repulsive forces that indirectly influence the resulting
mapping. We can implement such forces by modifying the scalar field s at the boundary
surfaces, A and B. Recall that we initialized the scalar field s to be 0 at the source shape
A, 1 at the target shape B, and interpolated in between A and B. To create an attractive
force at some region on B, we initialize s to be greater than 1 within that region. To create
a repulsive force, we initialize s to be less than 1 within that region. By changing s, we
are effectively changing the gradient of s on the hyper-surface and thus, altering the result-
ing vector field T so that the vectors converge toward attractive regions and disperse away
from repulsive regions. Figure 12 shows examples of these forces on a mapping generated
between identical 2D contours at the top and bottom, and Figure 13 shows a 3D example
with the splitting sphere. Because our method generates an explicit mapping between the
source and target shapes, we can also apply control methods that have traditionally been
used for mesh morphing, such as that of Alexa [Alexa 2001]. In his work, the meshes of
the source and target shapes are described differentially so that local control of the morph
can be obtained with a smooth transition.

11. CONCLUSION
Given a morph between two implicit surfaces, we have demonstrated how to create an
explicit mapping from one surface to the other. Characteristics of our approach include:

—Produces a smooth mapping between surfaces completely automatically.
—Works for any form of implicit morph.
—Gracefully handles topology changes.
—Preserves texture seams.

We have demonstrated our approach on the transfer of texture between any given pair of
objects, regardless of topology. The same approach can be used to transfer other surface
information such as a bump or displacement map. Multi-way morphing and analyzing
corresponding features of a collection of surfaces are other potential applications.
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