
Abstract

We describe techniques for varying the surface illumina-
tion and the shadows of objects that are drawn based on a
collection of pre-rendered images. To our knowledge this
is the first instance of an image-based rendering approach
that provides such changes in appearance due to lighting in
real time. As with other image-based techniques, our meth-
ods are insensitive to object complexity. We make changes
in lighting using texture hardware, and we can freely inter-
mix image-based models with traditional polygon-based
models. We accomplish lighting changes by discretizing
the surface normals at each pixel and storing these normals
in a texture map. We change the lighting of an object sim-
ply by changing a texture lookup table. We project shad-
ows on to a ground plane by selecting a pre-rendered view
of the object from the direction of the light source and dis-
torting this silhouette to match the object as seen from the
current viewer position. Potential applications of these tech-
niques include vehicle simulation, building walkthroughs
and video games.

Keywords: Image-based rendering, texture mapping, illu-
mination, shadows.

Introduction

Traditional rendering techniques create images of a scene
based on 3D geometric descriptions of the objects in the

scene. Image-based rendering, on the other hand, produces
images of a scene either directly or indirectly from one or
more images of the given scene. Image-based rendering is
now an active area of research in computer graphics and in
computer vision. Two factors that contribute to the popu-
larity of image-based rendering are the wide availability of
texture mapping hardware and the low cost of memory. We
use both of these observations as motivation for our approach
to image-based rendering. Our approach stores many ren-
dered images of a given object, and keeps additional infor-
mation with each luminance sample (image pixel) in order
to allow real-time lighting changes to the object.

There are many ways to store samples from images, each
with their own tradeoff between simplicity and speed ver-
sus generality of viewing. Our emphasis is on speed. We
store our image samples in an image fan, a collection of
rendered images of an object taken from a circle of camera
positions (Figure 1). This representation is not new, and
can be found in systems such as Quicktime VR [1]. An
object is rendered by displaying an image from the fan on a
rectangle whose plane is most nearly perpendicular to the
camera’s line of sight (Figure 2). Using an alpha channel
allows the background to show through where the object is
absent. Similar alpha channel techniques are commonly
used in flight simulators to render trees with textured poly-

Real-Time Lighting Changes for Image-Based Rendering

Huong Quynh Dinh, Ronald Metoyer and Greg Turk
Georgia Institute of Technology

{quynh | metoyer | turk}@cc.gatech.edu

Image Fan Image seen from
current viewpoint

Image seen from
current light position

Rendered view in final scene

Light Position

Ring of Cameras
Creates Image Fan

Light
Camera

Eye Position

Eye
Camera

Object

Figure 1: Ring of cameras produces an image fan.
Figure 2: Two images from fan are selected to render model and
its shadow.

gons so that background objects can be seen through those
portions of the trees where leaves and branches are absent.
In addition to storing the color at each sample, we also store
the depth and the surface normal of the object at the sample.
We used the public-domain ray tracing program Rayshade
to create the images and to give us the depth and surface
normal information [2]. The surface normal allows us to
re-calculate the illumination of the surface due to one or
more light sources. The depth information permits the cre-
ation of shadows.

Our image fans contains on the order of 80 to 120 images of
the object that are synthetically rendered from a 360 degree
sweep around the object at a given elevation. This number
of images is quite sufficient to allow smooth movement of
the object in a real-time application. Note that there are
two assumptions being made when we represent the object
by selecting one of these images as a stand-in for the object.
One assumption is that our elevation is not dramatically dif-
ferent from the elevation of the camera that captured the
image fan. We have found that people’s visual systems are
amazingly forgiving in this respect, and plausible views of
an object can deviate by plus or minus 20 degrees from the
original image fan camera. This restriction can be lifted if
we are willing to store a collection of images that are cre-
ated by rendering from positions on a hemisphere surround-
ing the object. The second assumption that we make when
using an image fan is that our viewing distance from the
object is not too different than the distance between the ob-
ject and the camera that created the image fan. Here again
we have found that human vision is forgiving, and that ob-
jects begin to look incorrect only when our view is very
close to the object.

After reviewing related work, we describe fast shading of
images using normal coding and then describe our shadow
rendering algorithm. We conclude with integration of this
method into a VR library and then discuss future directions.

Related Work

This section reviews some image-based rendering ap-
proaches that have made use of texture mapping hardware
to accelerate rendering. Maciel and Shirley use automati-
cally generated textured polygons as stand-ins for complex
geometry when an object or collections of objects are far
from the viewer [3]. Their images are generated in a pre-
processing step. They demonstrate this approach in a city
environment with many houses and buildings. A similar
approach is used by Shade and his collaborators to display
complex environments, but in their case the texture maps
are rendered on-the-fly [4]. They demonstrate this method
using a flyover of a hilly island with many trees. Debevec
and co-workers create realistic looking synthetic views of
buildings using texture maps created from photographs of
real buildings [5]. Aliaga and Lastra accelerate building
walkthroughs by only rendering the room the viewer is in
with full polygon geometry, and use texture maps placed at

doors to render the geometry through each door [6]. We
believe that many of the above systems that use textures as
stand-ins for geometry could use the approach we describe
for changing the apparent lighting direction.

There are other image based rendering systems that use tex-
ture mapping hardware as a computational aid in a more
indirect fashion. Levoy and Hanrahan use texture hardware
to rapidly compute four-dimensional coordinates in a light
field representation of an object [7]. Gortler et al. use small
texture mapped triangles to create images from their 4D
lumigraph representation of an object [8]. It remains to be
seen if there are efficient ways in which to incorporate light-
ing effects into such image-based rendering systems.

Normal Coding for Shading

In this section we describe our method of changing the shad-
ing of an image-based object when the light source is moved.
We make the assumption that our light sources are direc-
tional, that is, that they are positioned infinitely far away.
The key to our lighting-invariant image based rendering tech-
nique is the retention of surface normal vector information
for the images. We can calculate the appropriate illumina-
tion of an object by relating the direction of the object’s
surface normals to the light source position. Hence, we can
maintain correct illumination of the object as the object and
light source positions change if we have the normal vector
information. We store the normal vector for each pixel of
each image in the fan in what is called the normal image,
and we convert these normal vectors into 8-bit values that
index into a color map table. The color map table essen-
tially stores the luminance values to be associated with each
normal vector for a given light and view position. We modify
the shading of a surface by changing the entries in the color
map table rather than performing per-pixel lighting calcula-
tions.

We must first discretize the normal images to reduce the
number of possible normals to the number of available color
map entries. We use Glassner’s unit circle method [9] to
discretize the normal space. This method requires placing
a grid over a unit circle and precalculating a set of normal
vectors corresponding to each grid center as follows:

Placing a 17 ×17 grid over the unit circle results in 225 dif-
ferent normal vectors. By using a unit circle, we achieve a
higher resolution near the normals pointing towards the
viewer and less at the sides where changes in gradient are
not as easily perceived. For example, a normal vector such
as [1, 0, 0] that lies on the boundary of the grid and there-
fore cannot be perceived by the user is not represented in
this scheme.

x CircleCenterX GridCenterX Radius

y CircleCenterY GridCenterY Radius

z x y

= −()
= −()

= − +()

/

/

1 2 2

We store the discretized normal vectors corresponding to
each of the 225 values in a ByteToNormal table. This table
is indexed by byte values 0 to 255 and holds the discretized
normal corresponding to each byte code. We use this table
to encode the normal images. For each pixel’s normal in
the image we find the closest discretized normal and store
the corresponding 8-bit code in a more compact version of
the normal image (Figure 3).

At run time, we use the ByteToNormal table to update the
color map entries. For each frame in which the position of
a light source or view changes, we traverse the 225 values
in the ByteToNormal table to obtain the discrete normal
vectors. We calculate the intensity for each normal vector
and store the result in the color map entry corresponding to
the byte code (Figure 4). We calculate the intensity using a
diffuse shading model:

 final_color = (N • L) * surface_color (1)

N is the surface normal and L is the direction of the light. If
a given surface is uniform in color, we may use just a single
texture map to render the object. If, however, the surface is
textured so that the color of the object varies per-pixel, we
must resort to using one texture map to alter the lighting (N
• L) and also use a second texture to capture the per-pixel
variation in surface color. Notice that this requires us to
multiply together the pixel values of two textures, one that
captures the N • L term and the other that has per-pixel sur-
face color variation. We perform this multiplication of tex-
tures using the OpenGL procedure glBlendFunc. This func-
tion controls a blend between two source textures using an
alpha map. We treat the object’s per-pixel surface color as
one source and a black background polygon with an alpha
map as the other source. This black background polygon
with corresponding alpha map is simply the silhouette of
the object. The two sources are blended as follows:

 C = Alpha * ColorTexture + (1 - Alpha) * BackPoly (2)

ColorTexture is the colored texture image from the image
fan, and it represents the term surface_color in equation (1).

Alpha is actually the diffuse lighting contribution (N • L)
from equation (1). It serves as a blending percentage when
blending the foreground texture color image with the back-
ground object silhouette. BackPoly is a black silhouette
image of the object. The black color of this polygon makes
the part of equation (2) after the addition sign evaluate to
zero, thus making equation (2) exactly the same as equation
(1). The blending created by equation (2) results in an im-
age where the luminances determine the brightness of the
surface (Figure 9). This entire process requires three forms
of image data from the renderer (Figure 3): a normal image
(to create Alpha), a silhouette image (to create BackPoly)
and a surface color image (to create ColorTexture).

Dithering

Because we are using 225 discrete normal values, banding
is apparent in the shading of the images (Figure 5a). We
solve this problem by dithering the normals. We have imple-
mented Floyd-Steinberg dithering, which yeilds better re-
sults as shown in Figure 5b.

The Floyd-Steinberg dithering technique diffuses
discretization errors to neighboring pixels. The amount of
error diffused to each neighbor is dependent on the
neighbor’s location with respect to the pixel under consid-
eration [10]. We define error as the difference between the
actual normal value at the current pixel and the closest
discretized normal value. Errors associated with the x and y
components of the normal vector are calculated and diffused
separately. The x and y components of the neighboring pix-
els’ normal vectors are increased or decreased by the dif-
fused error values. The z component is then calculated from
x and y.

Shadows

In this section we describe rendering shadows on the ground
plane using information from the pre-computed images in

Current View Position Current Light Position

Encoded
Normal
Images

ByteToNormal
Table

Image
Selection

Shading
Update

Selected
Normal
Image

Hardware
Texture
Mapping

Rendered
Scene

Color
Map
Table

Figure 3: Creating the image fan makes color image, normal
image and silhouette for each camera view.

Figure 4: During real-time rendering the diffuse shading is
calculated for each discrete normal vector.

Renderer

Silhouette

Color Texture

Normal Image
Normal Encoded
Image

Object
Description

NormalToByte

the image fan. In essence, the image fan stores silhouettes
of an object from a circle of camera positions. One can
think of a shadow as a silhouette from the viewpoint of the
light source that is then projected onto the ground plane
[11]. We will refer to a particular shadow image from the
image fan, composed of black (shadow) and white pixels,
as a silhouette image. We make a shadow by creating a col-
lection of polygon strips based on the positions of columns
of black pixels in a silhouette image. To produce a shadow,
these polygons are rendered translucently on the ground
plane so as to darken the ground. Notice that we do not care
where a black pixel in a silhouette image would project to
on the ground plane unless it is either at the top or bottom of
a column of black pixels. In this shadow-creation frame-
work there are two tasks to creating shadows. First, we
need to break up the silhouette image into abutting polygon
strips based on the black pixels in adjacent columns. Sec-
ond, we need to determine where the vertices of these poly-
gon strips will project to on the ground.

We first address the issue of creating strips of polygons that
represent the shadow region defined by the black pixels in

the silhouette image. Because we know the model space
coordinates of the object’s silhouette at each pixel’s center,
we will create vertices of the polygon strips at the centers of
the pixels. (This results in the shadow being smaller by
half a pixel width, an unnoticeable amount.) Figure 6a shows
a collection of black pixels from a simple silhouette image.
For clarity, the pixels are represented as open squares. Fig-
ure 6b shows the vertical quadrilateral strips that we con-
struct from the pixels of Figure 6a. The polygon strips in
Figure 6b have been drawn slightly separate from one an-
other for clarity, but actual shadows are created using quad-
rilateral strips that abut exactly. The strip creation process
is accomplished by scanning down adjacent pairs of col-
umns and examining blocks of four pixels. Any block of
four pixels that does not match one of the patterns shown in
Figure 7 is an indication that we are at the top or bottom of
a strip, and thus a vertex is created at the center of a pixel.
The final polygon strips are created by joining together ver-
tices from adjacent pixel columns. This method not only
creates vertices at the top and bottom of pixel columns, but
it also correctly accounts for any holes in the shadow.

Now we will examine the task of projecting silhouette im-
age pixels onto the ground plane. Figure 8 illustrates the
steps we use, and the circled positions 1 through 5 in this
figure represent the different locations in various coordi-
nate systems that we use to perform this calculation. As
described earlier, we retain depth information for images in
a fan at each silhouette pixel. These depth values, taken
together with the silhouette pixel’s x and y positions, com-
pletely define a position on the object in model space (circled
position 1 in Figure 8). We could project these positions

Figure 6: (a) Black silhouette pixels. (b) The quadrilateral
strips created from this pattern of pixels.

Figure 5a: Image shaded using quantized normal vector coding. Figure 5b: Same image as Figure 5a, but created using dithered
normal vectors.

Figure 7: The patterns of four pixels that do not cause a vertex
to be created on a quadrilateral shadow strip.

onto the ground plane to create a shadow (position 2), but
unfortunately a shadow created in this manner does not cor-
rectly line up with the image-based object. Recall that, in
general, the position of the camera when an image in the
image fan is created will not be exactly the same as the po-
sition of a viewer when the image is being rendered in the
final scene. To choose which image to use to represent our
object, we select the nearest image-fan camera position to
our current view. We use the terms viewer camera to refer
to the position of the camera nearest to the current viewer
position, and the term viewer image to refer to the image

that was rendered from this viewer camera. Since the viewer
camera and the actual viewer position are not always the
same, we must adjust for this discrepancy when we create
shadows. Our solution is to transform the shadow position
into the same coordinate system as that of the viewer cam-
era.

We first project silhouette locations in model space onto the
ground plane (position 2), and we then project them onto
the plane of the viewer image (position 3). Now the shadow
locations are in the same plane as the object as shown in the
viewer image. Recall that the viewer image is in fact a
texture on a polygon that has been rotated to the appropri-
ate position for the current viewer position in world coordi-
nates. Our final step is to project the shadow vertex loca-
tions from the properly rotated viewer image onto the ac-
tual ground plane. This projection is accomplished by ex-
tending a ray from the current viewer position through the
shadow point on the rotated viewer image (position 4) and
find where this ray intersects the ground plane (position 5).
This position is the correct location (in the world space co-
ordinate system) of a vertex from a shadow strip polygon.

Shadows created by this method exactly match the posi-
tions of those parts of an image-based object that touch the
ground. Figure 9 demonstrate the results of this approach.
Because the number of polygon strips used to represent a
shadow is proportional to the number of columns of black
pixels in the silhouette image, this method is inexpensive in
terms of polygon count.

Incorporation into a Virtual Reality Toolkit

One advantage of using texture-mapped polygons as the
basis for our image-based rendering approach is that we can
easily incorporate the method into existing systems. As an
example of this, we have added our image-based objects
into the SVE (Simple Virtual Environment) toolkit, a sys-
tem created at the Georgia Institute of Technology as a plat-
form for VR applications [12]. Figure 10 shows several
image-based objects in a scene that also contains polygonal

World Coordinate System

Ground Plane

Model Coordinate System

Light
Position

Viewer
Camera Current

Viewer
Position

Silhouette
position in 3D

2 Shadow coordinate on
ground in model space

3 Image plane projection
of silhouette

4 Shadow coordinate
on rotated polygon

5 Final position on ground in
world coordinates. Created by
casting ray from eye through
shadow point on polygon to
ground plane.

Rotated Viewer Image

Viewer Image

1

4

5

2

3

Figure 8: Steps for transforming silhouette points from model
coordinates into world coordinates.

Figure 9: Images of a Buddha model (1,087,716 triangles) rendered using our shading and shadow-creation techniques.

trees and a textured ground plane. The average frame rate
for this scene was 15 Hz on an SGI Infinite Reality.

Future Work

We have demonstrated changing the illumination of a given
object using image-based rendering. One direction for fu-
ture research is to determine whether similar techniques can
be used to change the illumination of an entire scene, per-
haps using a representation similar to environment maps.
Another possibility is to extend our method so that it may
cast shadows on arbitrary objects, not just on a ground plane.
Yet another avenue for exploration is self-shadowing. We
speculate that an image-based approach to self-shadowing
will require a representation of an object that stores mul-
tiple samples along a given ray, such as the approach of
[13]. Even the highly flexible (and storage-intensive) light
field and lumigraph approaches [7] [8] that use 4D object
descriptions do not seem to contain enough information for
self-shadowing.

Bibliography

[1] Chen, Shenchang Eric, “QuickTime VR - An Image-Based
Approach to Virtual Environment Navigation,” Computer Graph-
ics Proceedings, Annual Conference Series (SIGGRAPH 95),
August 1995, pp. 29-38.

[2] Kolb, Craig, The Rayshade Homepage,

http://www-graphics.stanford.edu/~cek/rayshade/info.html.

[3] Maciel, Paulo and Peter Shirley, “Visual Navigation of Large
Environments Using Texture Clusters,” Symposium on Interac-
tive 3D Graphics, Monterey, California, April 9-12, 1995, pp. 95-
102.

[4] Shade, Jonathan, Dani Lischinski, David H. Salesin, Tony
DeRose and John Snyder, “Hierarchical Image Caching for Ac-
celerated Walkthroughs of Complex Environments,” Computer
Graphics Proceedings, Annual Conference Series (SIGGRAPH 96),
August 1996, pp. 75-82.

[5] Debevec, Paul E., Camillo J. Taylor and Jitendra Malik, “Mod-
eling and Rendering Architecture from Photographs: A Hybrid
Geometry- and Image-based Approach,” Computer Graphics Pro-
ceedings, Annual Conference Series (SIGGRAPH 96), August
1996, pp. 11-20.

[6] Aliaga, Daniel G. and Anselmo A. Lastra, “Architecural
Walkthroughs Using Portal Textures,” Proceedings of Visualiza-
tion 97, Phoenix, Arizona, October 19-24, 1997, pp. 355-362.

[7] Levoy, Marc and Pat Hanrahan, “Light Field Rendering,”
Computer Graphics Proceedings, Annual Conference Series
(SIGGRAPH 96), August 1996, pp. 31-42.

[8] Gortler, Steven J., Radek Grzeszczuk, Richard Szeliski and
Michael F. Cohen, “The Lumigraph,” Computer Graphics Proceed-
ings, Annual Conference Series (SIGGRAPH 96), August 1996,
pp. 43-54.

[9] Glassner, Andrew, “Normal Coding,” in Graphics Gems, Ed-
ited by Andrew Glassner, Academic Press, 1990, pp. 257-264.

[10] Floyd, R. and L. Steinberg, “An Adaptive Algorithm for Spa-
tial Gray Scale,” SID Symposium, 1975, pp. 36-37.

[11] Blinn, James F., “Me and My (Fake) Shadow,” IEEE Com-
puter Graphics and Applications, Vol. 8, No. 1, January 1988, pp.
82-86.

[12] Kessler, Drew, Simple Virtual Environment Toolkit, http://
www.cc.gatech.edu/gvu/virtual/SVE.

[13] Max, Nelson and K. Ohsaki, “Rendering Trees from Pre-
computed Z-buffer Views,” Proceedings of the Sixth Eurographics
Workshop on Rendering, Trinity College, Dublin, Ireland, June
12-14, 1995.

Figure 10: Scene with three image-based objects that was created using the SVE System.

